QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation

QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台

基本信息

  • 批准号:
    1936100
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Quantum technologies can revolutionize modern society, from enabling extremely fast computation and ultra-secure communication to unlocking new materials, such as high-temperature superconductors, that can transform day-to-day transportation, medical imaging, and electrical power delivery. Among many physical systems that strive to implement these technologies, light provides a significant advantage. It is easy to control and detect the single quanta of light called photons. Unfortunately, photons do not readily interact with each other, which poses a serious bottleneck for developing quantum photonic technologies. Moreover, unlike electronics, optical systems tend to be bulkier, and thus present significant limitations on scalability. This project aims to design quantum photonic integrated circuits that address these challenges. Carefully-engineered integrated photonic structures, also known as resonators, can store light in a microscopic volume for a long time. Integrating nanoparticles with these resonators can lead to a strong interaction between the light and nanoparticles, which subsequently mediates interaction between photons. Moreover, such integration allows a large size reduction, enabling hundreds of resonators to be made on a single square-millimeter chip. By coaxing individual photons to interact with one other within an array of resonators, a quantum network can be realized that can process quantum information. This project aims to develop a one-of-a-kind platform for quantum technologies that can potentially help scientists better understand effects like high-temperature superconductivity. Furthermore, the project aims to improve the training and education of undergraduate and high school students, with a strong emphasis on including women and minority communities, in scientific research in quantum technologies. Scalability remains a daunting problem for many quantum technologies. Unfortunately, it is virtually impossible to assemble node arrays with single atoms and solid-state defects, which, despite their significant contributions to fundamental quantum science, are not scalable. The field of quantum simulations thus stands to benefit enormously from a new, disruptive experimental platform. To that end, this project aims to marry two emerging fields, namely, solution-processed quantum dots and nanophotonic resonator arrays, to produce a scalable, multi-node quantum system. Nanophotonic resonators can enhance light-matter interaction via the spatial and temporal confinement of light. By deterministically integrating a single solution-processed quantum dot with such a resonator, strong repulsive interactions between photons can be realized. This interaction is necessary for simulating the complicated behavior of electrons in real materials and other strongly correlated quantum many-body systems. Coupling several of such quantum nonlinear resonators is key to engineering all-optical analogs of Hamiltonians of different quantum systems, which are intractable with any classical computer today. Combining modeling and simulation, new synthetic chemistry, and optical characterization, three research thrusts will be pursued under this project: (i) Simulate quantum Hamiltonians using a linear resonator array; (ii) Demonstrate single photon nonlinearity in each resonator; (iii) Perform non-equilibrium quantum simulations with interacting photons. The research builds upon the three investigators' prior work on solution processed quantum materials, design and fabrication of nanophotonic resonators, cavity quantum electrodynamics, and quantum simulations.This project is jointly funded by Quantum Leap Big Idea Program, the Division of Chemistry in the Mathematical and Physical Sciences Directorate, and the Division of Electrical, Communications, and Cyber Systems in the Engineering Directorate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子技术可以彻底改变现代社会,从实现极快的计算和超安全的通信到解锁新材料,例如可以改变日常交通、医学成像和电力输送的高温超导体。在许多努力实现这些技术的物理系统中,光提供了显着的优势。控制和检测称为光子的单个光量子很容易。不幸的是,光子不容易相互作用,这对发展量子光子技术构成了严重的瓶颈。此外,与电子设备不同,光学系统往往体积较大,因此对可扩展性存在重大限制。该项目旨在设计应对这些挑战的量子光子集成电路。精心设计的集成光子结构,也称为谐振器,可以在微观体积中长期存储光。将纳米颗粒与这些谐振器集成可以导致光和纳米颗粒之间产生强烈的相互作用,从而介导光子之间的相互作用。此外,这种集成可以大幅减小尺寸,从而可以在单个平方毫米芯片上制造数百个谐振器。通过诱导单个光子在谐振器阵列中彼此相互作用,可以实现能够处理量子信息的量子网络。该项目旨在开发一种独一无二的量子技术平台,可以帮助科学家更好地理解高温超导等效应。此外,该项目旨在改善本科生和高中生的培训和教育,特别强调让妇女和少数民族社区参与量子技术的科学研究。 对于许多量子技术来说,可扩展性仍然是一个令人畏惧的问题。不幸的是,实际上不可能组装具有单原子和固态缺陷的节点阵列,尽管它们对基础量子科学做出了重大贡献,但不可扩展。因此,量子模拟领域将从一个新的、颠覆性的实验平台中受益匪浅。为此,该项目旨在将两个新兴领域(即溶液处理的量子点和纳米光子谐振器阵列)结合起来,以产生可扩展的多节点量子系统。纳米光子谐振器可以通过光的空间和时间限制来增强光与物质的相互作用。通过确定性地将单个溶液处理的量子点与这样的谐振器集成,可以实现光子之间的强排斥相互作用。这种相互作用对于模拟真实材料和其他强相关量子多体系统中电子的复杂行为是必要的。耦合几个这样的量子非线性谐振器是设计不同量子系统的哈密顿量的全光模拟的关键,这对于当今的任何经典计算机来说都是棘手的。结合建模和模拟、新的合成化学和光学表征,该项目将追求三个研究重点:(i)使用线性谐振器阵列模拟量子哈密顿量; (ii) 展示每个谐振器中的单光子非线性; (iii) 用相互作用的光子进行非平衡量子模拟。该研究建立在三位研究人员之前在溶液处理量子材料、纳米光子谐振器的设计和制造、腔量子电动力学和量子模拟方面的工作基础上。该项目由量子飞跃大创意计划、数学化学部共同资助该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持 标准。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deterministic Quantum Light Arrays from Giant Silica-Shelled Quantum Dots
来自巨型二氧化硅壳量子点的确定性量子光阵列
  • DOI:
    10.1021/acsami.2c18475
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Nguyen, Hao A.;Sharp, David;Fröch, Johannes E.;Cai, Yi;Wu, Shenwei;Monahan, Madison;Munley, Christopher;Manna, Arnab;Majumdar, Arka;Kagan, Cherie R.;et al
  • 通讯作者:
    et al
Nanometer-Scale Spatial and Spectral Mapping of Exciton Polaritons in Structured Plasmonic Cavities
结构等离子体腔中激子极化子的纳米级空间和光谱测绘
  • DOI:
    10.1103/physrevlett.128.197401
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Bourgeois, Marc R.;Beutler, Elliot K.;Khorasani, Siamak;Panek, Nicole;Masiello, David J.
  • 通讯作者:
    Masiello, David J.
Integrated Quantum Nanophotonics with Solution‐Processed Materials
集成量子纳米光子学与解决方案-加工材料
  • DOI:
    10.1002/qute.202100078
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Chen, Yueyang;Sharp, David;Saxena, Abhi;Nguyen, Hao;Cossairt, Brandi M.;Majumdar, Arka
  • 通讯作者:
    Majumdar, Arka
Predicting Indium Phosphide Quantum Dot Properties from Synthetic Procedures Using Machine Learning
使用机器学习从合成过程预测磷化铟量子点特性
  • DOI:
    10.1021/acs.chemmater.2c00640
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Nguyen, Hao A.;Dou, Florence Y.;Park, Nayon;Wu, Shenwei;Sarsito, Harrison;Diakubama, Benedicte;Larson, Helen;Nishiwaki, Emily;Homer, Micaela;Cash, Melanie;et al
  • 通讯作者:
    et al
Symmetry-Enhanced Boundary Qubits at Infinite Temperature
无限温度下对称性增强的边界量子位
  • DOI:
    10.1103/physrevlett.125.200506
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Kemp, Jack;Yao, Norman Y.;Laumann, Chris R.
  • 通讯作者:
    Laumann, Chris R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Arka Majumdar其他文献

Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
  • DOI:
    10.1364/oe.19.007530
  • 发表时间:
    2011-04-11
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković
  • 通讯作者:
    J. Vučković
Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
Electrohydrodynamic Printing‐Based Heterointegration of Quantum Dots on Suspended Nanophotonic Cavities
电流体动力印刷——基于悬浮纳米光子腔上量子点的异质集成
  • DOI:
    10.1002/admt.202301921
  • 发表时间:
    2024-03-30
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Gregory G. Guymon;David Sharp;Theodore A. Cohen;Stephen L. Gibbs;Arnab Manna;Eden Tzanetopoulos;D. Gamelin;Arka Majumdar;J. D. MacKenzie
  • 通讯作者:
    J. D. MacKenzie
Boundary scattering tomography of the Bose Hubbard model on general graphs
一般图上 Bose Hubbard 模型的边界散射断层扫描
  • DOI:
  • 发表时间:
    2023-10-22
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhi Saxena;Erfan Abbasgholinejad;Arka Majumdar;Rahul Trivedi
  • 通讯作者:
    Rahul Trivedi
Roadmap for Optical Metasurfaces
光学超表面路线图
  • DOI:
    10.1021/acsphotonics.3c00457
  • 发表时间:
    2024-02-27
  • 期刊:
  • 影响因子:
    7
  • 作者:
    A. Kuznetsov;M. L. Brongersma;J. Yao;M. Chen;Uriel Levy;Din Ping Tsai;N. Zheludev;A. Faraon;A. Arbabi;Nanfang Yu;Debashis Ch;a;a;Kenneth B Crozier;A. Kildishev;Hao Wang;Joel K W Yang;Jason G. Valentine;P. Genevet;Jonathan A. Fan;Owen D. Miller;Arka Majumdar;Johannes E. Fröch;David Brady;Felix Heide;Ashok Veeraraghavan;N. Engheta;A. Alù;A. Polman;H. A. Atwater;Prachi Thureja;R. Paniagua‐Domínguez;S. Ha;A. I. Barreda;Jon A. Schuller;I. Staude;G. Grinblat;Yuri S. Kivshar;Samuel Peana;S. Yelin;Ale;er Senichev;er;V. Shalaev;S. Saha;A. Boltasseva;J. Rho;D. Oh;Joo;Junghyun Park;Robert Devlin;R. Pala
  • 通讯作者:
    R. Pala

Arka Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Arka Majumdar', 18)}}的其他基金

Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
  • 批准号:
    2344659
  • 财政年份:
    2024
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329089
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
  • 批准号:
    2223495
  • 财政年份:
    2022
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
  • 批准号:
    2103673
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
  • 批准号:
    2120774
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
  • 批准号:
    2127235
  • 财政年份:
    2021
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
  • 批准号:
    2003509
  • 财政年份:
    2020
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
  • 批准号:
    1845009
  • 财政年份:
    2019
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant

相似国自然基金

北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
  • 批准号:
    31470312
  • 批准年份:
    2014
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目

相似海外基金

QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
  • 批准号:
    2326784
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Distributed Entangled Quantum-Enhanced Interferometric Imaging for Telescopy and Metrology
QuSeC-TAQS:用于望远镜和计量的分布式纠缠量子增强干涉成像
  • 批准号:
    2326803
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
  • 批准号:
    2326838
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
  • 批准号:
    2326528
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
  • 批准号:
    2326767
  • 财政年份:
    2023
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了