OP: Quantum Light Matter Interaction with van der Waals Exciton-Polaritons
OP:量子光物质与范德华激子极化子的相互作用
基本信息
- 批准号:2103673
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical description: Quantum Information Science and Technologies can revolutionize modern society: by enabling extremely fast computing and ultra-secure communication, to unlocking new materials, such as high-temperature superconductors, that can transform day-to-day transportation, or create new chemical processes transforming agriculture. Light is an advantageous choice for building quantum technology, as it is easy to control and detect single packets of light, also known as photons. Unfortunately, photons do not easily interact with each other, which poses a serious bottleneck for controlling one stream of photons with another. The ability to control a signal is at the heart of any computing technology. Hence, current attempts to build quantum computer using light is limited to only simple operation. Developing more complex interaction between photons can dramatically enhance the computer’s capability. This project aims to demonstrate precisely such interactions between photons mediated by electrons. The key technology has two components: a device to store light in a small volume for a long time, and an artificial atom-like medium, also known as an exciton. Such medium is already at the heart of many day-to-day technologies, including solar cells, and light emitting diodes. Integrating such atom-like medium with light-storing devices leads to strong interaction between photons. On the nanometer scale, this effect can happen at the single photon level, which is needed for quantum computing. Moreover, the large size reduction of the light-storing devices allows hundreds of them to be made on a single square-millimeter chip, allowing integrated circuits for light, akin to integrated circuits that are at the heart of today’s electronics. This project will develop a platform to help scientists better understand effects like high-temperature superconductivity. Furthermore, this project will improve the training and education of undergraduate and high school students, with a strong emphasis on including women and minority communities, in scientific research in quantum technologies. Through the PI’s active involvement with the Optical Society of America and industrial laboratories, the scientific results will be disseminated to a wider scientific audience via seminars, workshops, peer-reviewed publications, and conferences. Technical description: The research aims to develop a quantum optical platform to understand and engineer light matter interaction at the most fundamental level, where single photons start interacting with each other via single quanta of materials known as excitons. This platform is made of strongly coupled hybrid particles called exciton-polaritons, which are part-matter and part-light, and thus inherit the best of both worlds. While photons provide the ability to couple spatially separated nodes, the excitons provide the ability for the polaritons to interact with each other. The key to creating this strongly interacting exciton-polariton system is the merging of atomically thin van der Waals materials, such as transition metal dichalcogenides with an extremely large exciton binding energy, and ultra-small mode-volume nanophotonic resonators and resonator arrays. Combining optical and electrical techniques as well as quantum optical modelling, the project probes coherent light matter interaction in van der Waals materials to provide deep insights into the nature of atomically thin exciton-polaritons, and polariton condensates. The ability to control polaritons provides an excellent opportunity to synthesize complex quantum Hamiltonians, which are impossible to solve using classical computers. The resulting strongly correlated two-dimensional polariton may prove critical for new capabilities in quantum nanophotonic technologies that exploit the spin-valley physics or generate new physics, such as exciton-mediated superconductivity. Combining numerical simulation, device fabrication, and optical characterization, three research aims are pursued: (1) develop a robust exciton-polariton platform; (2) realize single photon nonlinear optics for quantum many-body simulations; and (3) explore new states of quantum materials using exciton-polaritons.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:量子信息科学和技术可以彻底改变现代社会:通过实现极快的计算和超安全的通信,解锁新材料,例如高温超导体,可以改变日常交通,或创造改变农业的新化学过程。光是构建量子技术的有利选择,因为它很容易控制和检测单个光包(也称为光子),不幸的是,光子不易相互作用,这会带来严重的影响。控制一个光子流与另一个光子流的能力是任何计算技术的核心。因此,目前使用光构建量子计算机的尝试仅限于开发光子之间更复杂的相互作用。该项目旨在精确地演示由电子介导的光子之间的这种相互作用,其关键技术有两个组成部分:一种能够在小体积中长期存储光的装置,以及一种人造原子状介质。作为激子。介质已经成为许多日常技术的核心,包括太阳能电池和发光二极管,将这种类原子介质与光存储装置集成可以在纳米尺度上产生强烈的光子相互作用。此外,光存储器件的尺寸大幅减小,可以在单个平方毫米芯片上制作数百个光存储器件,从而实现光集成电路,类似于集成。电路该项目将开发一个平台,帮助科学家更好地了解高温超导等效应。此外,该项目将改善本科生和高中生的培训和教育,重点包括:通过 PI 与美国光学协会和工业实验室的积极参与,科学成果将通过研讨会、讲习班、同行评审出版物和出版物传播给更广泛的科学受众。技术描述:该研究旨在开发一个量子光学平台,以在最基本的层面上理解和设计强光物质相互作用,其中单个光子开始通过称为激子的单个量子材料彼此相互作用。称为激子-极化子的耦合混合节点,部分是物质,部分是光,因此继承了两个世界的优点,虽然光子提供了空间分离耦合的能力,但激子为极化子提供了耦合的能力。创建这种相互作用的强激子极化系统的关键是原子薄范德华材料的融合,例如具有极大激子结合能的过渡金属二硫属化物和超小模式体积纳米光子谐振器。该项目结合光学和电学技术以及量子光学建模,探索范德华材料中的相干光物质相互作用,以深入了解光的本质。原子级薄激子极化子和强极化子凝聚体的控制能力为合成复杂的量子哈密顿量提供了绝佳的机会,而使用经典计算机无法解决这些问题,由此产生的相关二维极化子可能对于量子新能力至关重要。利用自旋谷物理或产生新物理的纳米光子技术,例如结合数值模拟、器件制造和光学表征,追求三个研究目标: (1) 开发强大的激子极化平台;(2) 实现用于量子多体模拟的单光子非线性光学;以及 (3) 使用激子极化探索量子材料的新状态。通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visible Wavelength Flatband in a Gallium Phosphide Metasurface
磷化镓超表面中的可见波长平带
- DOI:10.1021/acsphotonics.3c00175
- 发表时间:2023-07
- 期刊:
- 影响因子:7
- 作者:Munley, Christopher;Manna, Arnab;Sharp, David;Choi, Minho;Nguyen, Hao A.;Cossairt, Brandi M.;Li, Mo;Barnard, Arthur W.;Majumdar, Arka
- 通讯作者:Majumdar, Arka
Waveguide-Integrated van der Waals Heterostructure Mid-Infrared Photodetector with High Performance
高性能波导集成范德华异质结构中红外光电探测器
- DOI:10.1021/acsami.2c01094
- 发表时间:2022-06
- 期刊:
- 影响因子:9.5
- 作者:Chen, Po;Chen, Yueyang;Chang, Tian;Li, Wei;Li, Jia;Lee, Seokhyeong;Fang, Zhuoran;Li, Mo;Majumdar, Arka;Liu, Chang
- 通讯作者:Liu, Chang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arka Majumdar其他文献
Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator.
超低功率光纤耦合砷化镓光子晶体腔电光调制器。
- DOI:
10.1364/oe.19.007530 - 发表时间:
2011-04-11 - 期刊:
- 影响因子:3.8
- 作者:
G. Shambat;B. Ellis;M. Mayer;Arka Majumdar;E. E. Haller;J. Vučković - 通讯作者:
J. Vučković
Full color Imaging with Large-Aperture Meta-Optics
使用大孔径超光学器件进行全彩色成像
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Arka Majumdar - 通讯作者:
Arka Majumdar
Electrohydrodynamic Printing‐Based Heterointegration of Quantum Dots on Suspended Nanophotonic Cavities
电流体动力印刷——基于悬浮纳米光子腔上量子点的异质集成
- DOI:
10.1002/admt.202301921 - 发表时间:
2024-03-30 - 期刊:
- 影响因子:6.8
- 作者:
Gregory G. Guymon;David Sharp;Theodore A. Cohen;Stephen L. Gibbs;Arnab Manna;Eden Tzanetopoulos;D. Gamelin;Arka Majumdar;J. D. MacKenzie - 通讯作者:
J. D. MacKenzie
Boundary scattering tomography of the Bose Hubbard model on general graphs
一般图上 Bose Hubbard 模型的边界散射断层扫描
- DOI:
- 发表时间:
2023-10-22 - 期刊:
- 影响因子:0
- 作者:
Abhi Saxena;Erfan Abbasgholinejad;Arka Majumdar;Rahul Trivedi - 通讯作者:
Rahul Trivedi
Roadmap for Optical Metasurfaces
光学超表面路线图
- DOI:
10.1021/acsphotonics.3c00457 - 发表时间:
2024-02-27 - 期刊:
- 影响因子:7
- 作者:
A. Kuznetsov;M. L. Brongersma;J. Yao;M. Chen;Uriel Levy;Din Ping Tsai;N. Zheludev;A. Faraon;A. Arbabi;Nanfang Yu;Debashis Ch;a;a;Kenneth B Crozier;A. Kildishev;Hao Wang;Joel K W Yang;Jason G. Valentine;P. Genevet;Jonathan A. Fan;Owen D. Miller;Arka Majumdar;Johannes E. Fröch;David Brady;Felix Heide;Ashok Veeraraghavan;N. Engheta;A. Alù;A. Polman;H. A. Atwater;Prachi Thureja;R. Paniagua‐Domínguez;S. Ha;A. I. Barreda;Jon A. Schuller;I. Staude;G. Grinblat;Yuri S. Kivshar;Samuel Peana;S. Yelin;Ale;er Senichev;er;V. Shalaev;S. Saha;A. Boltasseva;J. Rho;D. Oh;Joo;Junghyun Park;Robert Devlin;R. Pala - 通讯作者:
R. Pala
Arka Majumdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arka Majumdar', 18)}}的其他基金
Collaborative Research: Moire Exciton-polariton for Analog Quantum Simulation
合作研究:用于模拟量子模拟的莫尔激子极化
- 批准号:
2344659 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
- 批准号:
2329089 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
EFRI BRAID: Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation
EFRI BRAID:用于预测性和适应性大脑恢复和增强的光学神经协处理器
- 批准号:
2223495 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
GCR: Meta-Optical Angioscopes for Image-Guided Therapies in Previously Inaccessible Locations
GCR:元光学血管镜,用于在以前无法到达的位置进行图像引导治疗
- 批准号:
2120774 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Collaborative Research: OP: Meta-optical Computational Image Sensors
合作研究:OP:元光学计算图像传感器
- 批准号:
2127235 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
OP: Spatial Light Modulation using Reconfigurable Phase Change Material Metasurfaces
OP:使用可重构相变材料超表面进行空间光调制
- 批准号:
2003509 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CAREER: Van der Waals material integrated ultra-low power nanophotonics
职业:范德华材料集成超低功耗纳米光子学
- 批准号:
1845009 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
QII-TAQS: Strongly Interacting Photons in Coupled Cavity Arrays: A Platform for Quantum Many-Body Simulation
QII-TAQS:耦合腔阵列中的强相互作用光子:量子多体模拟平台
- 批准号:
1936100 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
QLC: EAGER: Quantum Simulation Using Solution Processed Quantum Dots Coupled to Nano-cavities
QLC:EAGER:使用溶液处理的量子点耦合到纳米腔进行量子模拟
- 批准号:
1836500 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
相似国自然基金
冷原子中基于相干增强弱光非线性的非互易光传输量子调控
- 批准号:62375047
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
适应喧闹环境的量子光力学测量理论研究
- 批准号:12374328
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
超导量子比特光互联的关键技术研究
- 批准号:92365109
- 批准年份:2023
- 资助金额:68 万元
- 项目类别:重大研究计划
探索提高受体相荧光量子效率,降低器件非辐射能量损失的新型三元有机光伏体系构筑策略
- 批准号:22309098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多振子悬浮光力系统量子关联增强的力学量传感研究
- 批准号:12304545
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
革新的カーボン量子ドット蛍光材料の液相合成法の開拓
开发创新碳量子点荧光材料的液相合成方法
- 批准号:
24K08570 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
半導体量子ドット集合系での超蛍光発生機構における量子揺らぎの観測と制御
半导体量子点组装系统中超荧光产生机制中量子涨落的观测与控制
- 批准号:
24K06929 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Telecom wavelength high-repetition-rate quantum light source
电信波长高重复率量子光源
- 批准号:
10088290 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
量子混合が光励起多スピン系の励起状態ダイナミクスに及ぼす効果とスピン偏極の解明
量子混合对光激发多自旋系统激发态动力学的影响及自旋极化的阐明
- 批准号:
24K08342 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
大規模クラスター状態の実現に向けた、移動光格子に捕獲された原子の量子ビット操作
对移动光学晶格中捕获的原子进行量子位操纵,以实现大规模簇态
- 批准号:
24KJ0574 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for JSPS Fellows