Problems in geometry, topology, and group theory
几何、拓扑和群论问题
基本信息
- 批准号:2305286
- 负责人:
- 金额:$ 41.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To understand complicated objects, it is useful to know how they are built from simpler pieces. For example, the individual parts of a car are relatively simple, but assemble into a complex and powerful machine; sectional images from MRI can be used to reconstruct a picture of the human body that carries enough information to diagnose medical problems. Studying objects as the amalgam of simpler pieces has great utility in mathematics. This project concerns complicated spaces that can be built out of simpler ones, namely surfaces, like the surface of a ball or a doughnut (as well as more complicated surfaces). The instructions for assembling the pieces are described by a mathematical object called the mapping class group, which carries all the information necessary to build certain spaces from surfaces. The PI will work with a diverse team of PhD students, postdocs, and colleagues and investigate the kinds of spaces that can be built from surfaces, and their geometric, algebraic, and analytic features.This project involves the study of surfaces of finite and infinite type, their mapping class groups, and geometric features of manifolds and bundles we can understand from these. The PI, together with his students, postdocs, and collaborators, will focus on the following themes: (1) Convex cocompact and geometrically finite subgroups of the mapping class group for finite type surfaces and the geometry of the associated extension groups/surface bundles. (2) The hyperbolic geometry of depth-one foliations via mapping tori of end-periodic homeomorphism. (3) The geometric group theory of ``medium size” mapping class groups naturally containing end-periodic homeomorphisms. (4) Relations amongst pseudo-Anosov monodromies for fibered classes in a fixed hyperbolic 3-manifold. (5) Decoding geometry of billiard tables from the symbolic coding of its billiard flow. The PI will continue his investigations of these themes, and probe the intricate ways they interact with each other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
要理解复杂的物体,了解它们是如何由简单的部件构建起来是很有用的。人体的图像携带了足够的信息来诊断医学问题,将物体作为简单部件的混合物进行研究在数学中具有很大的用途,该项目涉及可以用更简单的物体(即表面)构建的复杂空间,例如表面。球或甜甜圈(以及更复杂的组装各个部分的指令由称为映射类组的数学对象来描述,该对象包含从曲面构建某些空间所需的所有信息。PI 将与由博士生、博士后和同事组成的多元化团队合作。并研究可以从曲面构建的空间类型及其几何、代数和解析特征。该项目涉及有限和无限类型的曲面、它们的映射类群以及流形和丛的几何特征的研究理解自PI 与他的学生、博士后和合作者将重点关注以下主题:(1)有限类型曲面的映射类群的凸协紧子群和几何有限子群以及相关扩展群/曲面的几何形状。 (2)通过映射末周期同胚的环面的双曲几何(3)“中等大小”映射自然包含的类群的几何群论。 (4) 固定双曲 3 流形中纤维类的伪阿诺索夫单态之间的关系 (5) 从台球流的符号编码中解码台球桌的几何形状。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Isomorphisms and commensurability of surface Houghton groups
表面霍顿群的同构性和可通约性
- DOI:10.1515/jgth-2023-0297
- 发表时间:2024-03
- 期刊:
- 影响因子:0.5
- 作者:Aramayona, Javier;Domat, George;Leininger, Christopher J.
- 通讯作者:Leininger, Christopher J.
Surface Houghton groups
表面霍顿组
- DOI:10.1007/s00208-023-02751-2
- 发表时间:2023-11
- 期刊:
- 影响因子:1.4
- 作者:Aramayona, Javier;Bux, Kai;Kim, Heejoung;Leininger, Christopher J.
- 通讯作者:Leininger, Christopher J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Leininger其他文献
Christopher Leininger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Leininger', 18)}}的其他基金
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
- 批准号:
2246832 - 财政年份:2023
- 资助金额:
$ 41.16万 - 项目类别:
Standard Grant
2019 Graduate Student Topology and Geometry Conference
2019年研究生拓扑与几何会议
- 批准号:
1856681 - 财政年份:2019
- 资助金额:
$ 41.16万 - 项目类别:
Standard Grant
Combinatorial and Algebraic Aspects of Geometric Structures
几何结构的组合和代数方面
- 批准号:
1922091 - 财政年份:2019
- 资助金额:
$ 41.16万 - 项目类别:
Standard Grant
Geometry, topology and group theory in low dimensions.
低维几何、拓扑和群论。
- 批准号:
1207183 - 财政年份:2012
- 资助金额:
$ 41.16万 - 项目类别:
Standard Grant
Geometry, topology and group theory of surfaces
曲面的几何、拓扑和群论
- 批准号:
0905748 - 财政年份:2009
- 资助金额:
$ 41.16万 - 项目类别:
Standard Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
中天山乌拉斯台韧性剪切带几何学与运动学构造解析
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Mapping Problems in Computational Geometry and Topology
职业:计算几何和拓扑中的绘图问题
- 批准号:
1941086 - 财政年份:2020
- 资助金额:
$ 41.16万 - 项目类别:
Continuing Grant
Problems in Low Dimensional Geometry and Topology
低维几何和拓扑问题
- 批准号:
1006553 - 财政年份:2010
- 资助金额:
$ 41.16万 - 项目类别:
Continuing Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
- 批准号:
1036361 - 财政年份:2010
- 资助金额:
$ 41.16万 - 项目类别:
Standard Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
- 批准号:
0634907 - 财政年份:2006
- 资助金额:
$ 41.16万 - 项目类别:
Standard Grant
Eclectic problems in topology, geometry and dynamics
拓扑、几何和动力学中的折衷问题
- 批准号:
ARC : DP0342758 - 财政年份:2003
- 资助金额:
$ 41.16万 - 项目类别:
Discovery Projects