Large-Scale Optical Ultrasound Transducer Arrays for High-Speed and High-Resolution 3D Acoustic Tomography

用于高速、高分辨率 3D 声学断层扫描的大型光学超声换能器阵列

基本信息

  • 批准号:
    2330199
  • 负责人:
  • 金额:
    $ 40.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Ultrasound imaging is essential in the clinic for early detection, diagnosis, and prognosis of many diseases. It provides real-time imaging speed, has no harmful ionizing radiation, and is low cost. However, current ultrasound imaging systems mainly produce two-dimensional planar images that may be inaccurate and/or difficult to interpret. Therefore, a three-dimensional (3D) imaging capability is essential for visualizing, navigating, and investigating patient anatomy and pathologies that are naturally 3D. To produce 3D images in a timely manner, an ultrasound imaging system must be able to capture the whole acoustic wave field emitted by the imaging target, such as a tumor. This requires a large array of ultrasound sensors or transducers, massive electrical cables, and sophisticated and expensive data acquisition electronics. Unfortunately, because of high system complexity and cost, 3D ultrasound imaging is still very limited in terms of performance and availability. In this project, a new optical technology will be developed to detect and convert the invisible acoustic wave field into a visible optical light field, which can be readily recorded by a camera. This “seeing the sound” approach is expected to address the performance and cost issues and open the door for many applications of 3D ultrasound imaging. This project will also provide unique multidisciplinary learning and training opportunities in microsystems, optics, acoustics and medical imaging for students and the general public. This project aims to achieve large-scale optical ultrasound transducer (OUT) arrays for enabling high-speed and high-resolution 3D acoustic tomography. Different from their electrical counterparts, OUTs convert ultrasound waves into optical signals through optomechanical modulation. This makes it possible to maintain high sensitivity even with a small element size. What’s more, ultrasound signals can be read out “wirelessly” via optical means without physical interconnects. However, one of the fundamental challenges in existing OUTs are their poor optical uniformity. Reading out ultrasound signals from multiple elements requires continual optical tuning, which is a tedious process and seriously limits the data acquisition speed. This project aims to address the fundamental bottleneck issues in current OUTs by exploring novel optical detector design, fabrication, and readout methods. Particularly, new mechanical/optical co-design and modeling will be combined with precision micromachining and tuning processes for achieving large-scale OUT arrays with controllable and uniform optical and acoustic properties. In addition, a new parallel approach based on pulsed illumination and camera capturing will be developed for fast ultrasound data acquisition. With wireless optical readout and natural immunity to electromagnetic interference, the OUT array could enable new acoustic imaging capabilities not possible before from tetherless, wearable, or remote imaging to seamless fusion with other mainstream imaging modalities. In addition, the high optical transparency of the OUT array can greatly facilitate the integration of hybrid optical and acoustic imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超声成像对于许多疾病的早期发现,诊断和预后至关重要。它提供实时成像速度,没有有害的电离辐射,并且成本较低。但是,当前的超声成像系统主要产生可能不准确和/或难以解释的二维平面图像。因此,三维(3D)成像能力对于可视化,导航和研究自然3D的患者解剖结构和病理学至关重要。要及时产生3D图像,超声成像系统必须能够捕获成像目标(例如肿瘤)发出的整个声波场。这需要大量的超声传感器或传感器,大量的电缆以及复杂且昂贵的数据采集电子设备。不幸的是,由于系统的复杂性和成本高,3D超声成像在性能和可用性方面仍然非常有限。在该项目中,将开发一种新的光学技术,以检测并将无形的声波场转换为可见光光场,可以很容易地通过相机记录。这种“观察声音”方法有望解决性能和成本问题,并为3D超声成像的许多应用打开大门。该项目还将为学生和公众提供独特的多学科学习和培训机会。该项目旨在实现大型光学超声传感器(OUT)阵列,以实现高速和高分辨率3D声学层析成绩。与它们的电气相对较大,Out通过光学机械调制将超声波转换为光学信号。这使得即使元素尺寸较小,也可以保持高灵敏度。此外,可以通过光学手段“无线”读取超声信号,而无需物理互连。但是,现有出局的基本挑战之一是它们的光学均匀性不佳。从多个元素中读取超声信号需要连续的光学调整,这是一个繁琐的过程,并严重限制了数据采集速度。该项目旨在通过探索新颖的光学探测器设计,制造和读出方法来解决当前出局中基本的瓶颈问题。部分地,新的机械/光学共同设计和建模将与精确的微加工和调谐过程结合使用,以实现具有控制和均匀的光学和声学特性的大规模阵列。此外,将开发一种基于脉冲照明和摄像机捕获的新的平行方法,以进行快速超声数据采集。通过无线光学读数和对电磁干扰的自然免疫学,OUT阵列可以使新的声学成像功能在从无绳,可穿戴或远程成像到与其他主流成像方式的无缝融合之前不可能实现。此外,OUT阵列的高光学透明度可以极大地支持混合光学和声学成像的整合。该奖项反映了NSF的法定任务,并通过使用基金会的智力优点和更广泛的影响审查标准来通过评估来表现出珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jun Zou其他文献

Modular Soft Robotics: Modular Units, Connection Mechanisms, and Applications
模块化软机器人:模块化单元、连接机制和应用
  • DOI:
    10.1002/aisy.201900166
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Chao Zhang;Pingan Zhu;Yanqiao Lin;Zhongdong Jiao;Jun Zou
  • 通讯作者:
    Jun Zou
Characterization and immune function of the interferon-β promoter stimulator-1 in the barbel chub, Squaliobarbus curriculus
触须鲢、Squaliobarbus 课程中干扰素-β 启动子刺激物 1 的特征和免疫功能
  • DOI:
    10.1016/j.dci.2019.103571
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Xin Zhao;Tiaoyi Xiao;Shengzhen Jin;Jing'an Wang;Junya Wang;Hong Luo;Rui Li;Tong Sun;Jun Zou;Yaoguo Li
  • 通讯作者:
    Yaoguo Li
Fourier-transform spectrometer chip covering visible band on silica planar waveguide
覆盖二氧化硅平面波导可见光波段的傅里叶变换光谱仪芯片
  • DOI:
    10.1016/j.optcom.2019.124599
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Xiao Ma;Jun Zou;Qiongchan Shao;Mingyu Li;Jian-Jun He
  • 通讯作者:
    Jian-Jun He
Fingertip Non-Contact Optoacoustic Sensor for Near-Distance Ranging and Thickness Differentiation for Robotic Grasping*
用于机器人抓取的近距离测距和厚度区分的指尖非接触式光声传感器*
Toward Optimal Connection Management for Massive Machine-Type Communications in 5G System
实现 5G 系统中大规模机器类型通信的最佳连接管理
  • DOI:
    10.1109/jiot.2021.3065506
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Wen Zhan;Chen Xu;Xinghua Sun;Jun Zou
  • 通讯作者:
    Jun Zou

Jun Zou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jun Zou', 18)}}的其他基金

Collaborative Research: Fast Spectrally-Encoded Photoacoustic Microscopy for Multi-Parameter Bioenergetic Characterization of Heterogeneous Cancer Cells
合作研究:快速光谱编码光声显微镜用于异质癌细胞的多参数生物能表征
  • 批准号:
    2036134
  • 财政年份:
    2021
  • 资助金额:
    $ 40.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Characterization and Dynamics Modeling of Stomatal Function in Plants
合作研究:植物气孔功能的多尺度表征和动力学建模
  • 批准号:
    1852184
  • 财政年份:
    2019
  • 资助金额:
    $ 40.69万
  • 项目类别:
    Standard Grant
Collaborative Research: High Resolution Acoustic Manipulation of Single Cells with Integrated MEMS based Phased Arrays
合作研究:利用集成 MEMS 相控阵对单细胞进行高分辨率声学操控
  • 批准号:
    1809710
  • 财政年份:
    2018
  • 资助金额:
    $ 40.69万
  • 项目类别:
    Standard Grant
EAGER: MEMS Co-Steered Optical and Acoustic Dual Modal Communication and Ranging Devices for Underwater Vehicles
EAGER:用于水下航行器的 MEMS 协同引导光学和声学双模通信和测距设备
  • 批准号:
    1748161
  • 财政年份:
    2017
  • 资助金额:
    $ 40.69万
  • 项目类别:
    Standard Grant
Collaborative Research/IDBR: High-Throughput Measurement of Oxygen Consumption Rates of Single Cells Using Wide-Field Optical-Resolution Photoacoustic Microscopy
合作研究/IDBR:使用宽视场光学分辨率光声显微镜高通量测量单细胞的耗氧率
  • 批准号:
    1255921
  • 财政年份:
    2013
  • 资助金额:
    $ 40.69万
  • 项目类别:
    Continuing Grant
MEMS-Switched Acoustic Delay-Lines Microsystems for Advanced Ultrasonic Imaging Applications
用于高级超声成像应用的 MEMS 开关声学延迟线微系统
  • 批准号:
    1131758
  • 财政年份:
    2011
  • 资助金额:
    $ 40.69万
  • 项目类别:
    Standard Grant
Development of leucocyte cell lines for immunological research in teleost fish
用于硬骨鱼免疫学研究的白细胞系的开发
  • 批准号:
    G0800725/1
  • 财政年份:
    2009
  • 资助金额:
    $ 40.69万
  • 项目类别:
    Research Grant

相似国自然基金

基于光学成像的大规模活体细胞跟踪及其对细胞行为的定量分析
  • 批准号:
    82302255
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
可模块化扩展双旋光结构三值光学处理器及其MSD乘法器的研究与应用—基于大规模数据运算背景
  • 批准号:
    62262022
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于超大规模集成光学芯片的多通道超宽带可调谐掺铋光纤激光器
  • 批准号:
    61405014
  • 批准年份:
    2014
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于大规模集成光学芯片的新型可调谐锁模光纤激光器的研制
  • 批准号:
    61275052
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目
适于高速光互联和大规模数字集成光路的超高频光学时钟关键技术
  • 批准号:
    61275043
  • 批准年份:
    2012
  • 资助金额:
    82.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a Colorimetric Sensor for Detection of Cerebrospinal Fluid Leaks
开发用于检测脑脊液泄漏的比色传感器
  • 批准号:
    10602859
  • 财政年份:
    2023
  • 资助金额:
    $ 40.69万
  • 项目类别:
Large-scale calcium and voltage imaging to illuminate neural mechanisms of visual experience
大规模钙和电压成像阐明视觉体验的神经机制
  • 批准号:
    10753172
  • 财政年份:
    2023
  • 资助金额:
    $ 40.69万
  • 项目类别:
Physics-informed Machine Learning approach for a selective, sensitive, and rapid sensor for detecting unsafe levels of carcinogenic/toxic VOCs
基于物理的机器学习方法,用于选择性、灵敏且快速的传感器,用于检测致癌/有毒 VOC 的不安全水平
  • 批准号:
    10600819
  • 财政年份:
    2023
  • 资助金额:
    $ 40.69万
  • 项目类别:
Development of large-scale sequence-function relationship using in situ optical sequencing
使用原位光学测序开发大规模序列-功能关系
  • 批准号:
    10575350
  • 财政年份:
    2023
  • 资助金额:
    $ 40.69万
  • 项目类别:
BRAIN CONNECTS: The center for Large-scale Imaging of Neural Circuits (LINC)
大脑连接:神经回路大规模成像中心 (LINC)
  • 批准号:
    10672681
  • 财政年份:
    2023
  • 资助金额:
    $ 40.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了