Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
基本信息
- 批准号:1036361
- 负责人:
- 金额:$ 7.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-15 至 2011-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Number: 0634907Institution: Georgia Tech Research Corporation - GA Institute of TechnologyPI: Basu, Saugata Title: Algorithmic Problems in Semi-algebraic Geometry and TopologyAbstract:Algorithmic semi-algebraic geometry lies at the heart of many problems in several different areas of computer science and mathematics including discrete and computational geometry, robot motion planning, geometric modeling, computer-aided design, geometric theorem proving, mathematical investigations of real algebraic varieties, molecular chemistry, constraint databases etc. A closely related subject area is quantitative real algebraic geometry. Results from quantitative real algebraic geometry are the basic ingredients of better algorithms in semi-algebraic geometry and play an increasingly important role in several other areas of computer science: for instance, in bounding the geometric complexity of arrangements in computational geometry, computational learning theory, proving lower bounds in computational complexity theory, convex optimization problems etc. As such algorithmic and quantitative real-algebraic geometry has been an extremely active area of research in recent years.The main research objectives would include, development of new techniques in real algebraic geometry that would lead to new and better algorithms, for computing topological invariants of semi-algebraic sets in theory, as well as practice, and bringing methods and techniques of algorithmic real algebraic geometry to bear on several open problems in discrete and computational geometry and to explore new connections, especially in the area of computational topology. The educational goals involve, developing an integrated cross-disciplinary curriculum suitable for advanced under-graduate and beginning graduate students, requiring no pre-requisite beyond college-level calculus and linear algebra, so that that they can quickly absorb the mathematical background necessary for this line of research. The broader impact of the proposed activity would include training of new graduate students in the field of algorithmic semi-algebraic geometry, as well as collaborative research spanning several different areas: real algebraic geometry, discrete and computational geometry, symbolic computation and computational complexity theory.
编号:0634907 机构:佐治亚理工学院研究公司 - GA 理工学院 PI:Basu,Saugata 标题:半代数几何和拓扑中的算法问题 摘要:算法半代数几何是计算机科学和数学几个不同领域中许多问题的核心包括离散几何和计算几何、机器人运动规划、几何建模、计算机辅助设计、几何定理证明、实际数学研究代数簇、分子化学、约束数据库等。一个密切相关的学科领域是定量实代数几何。定量实代数几何的结果是半代数几何中更好算法的基本成分,并且在计算机科学的其他几个领域中发挥着越来越重要的作用:例如,在限制计算几何排列的几何复杂性、计算学习理论、证明计算复杂性理论、凸优化问题等的下限。因此,算法和定量实代数几何近年来一直是一个非常活跃的研究领域。主要研究目标包括,开发实代数几何新技术,会带来新的更好的算法,用于在理论和实践中计算半代数集的拓扑不变量,并将算法实代数几何的方法和技术应用于离散几何和计算几何中的几个开放问题,并探索新的联系,特别是在计算拓扑领域。教育目标包括开发适合高年级本科生和初级研究生的综合跨学科课程,除了大学水平的微积分和线性代数之外不需要任何先决条件,以便他们能够快速吸收所需的数学背景研究线。拟议活动的更广泛影响将包括在算法半代数几何领域对新研究生进行培训,以及跨越几个不同领域的合作研究:实代数几何、离散和计算几何、符号计算和计算复杂性理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saugata Basu其他文献
The roles of personality, stressful life events, meaning in life, reasons for living on suicidal ideation: A study in college students.
人格的角色、压力性生活事件、生活意义、自杀意念的原因:一项针对大学生的研究。
- DOI:
10.1016/j.jalz.2014.04.184 - 发表时间:
2024-09-13 - 期刊:
- 影响因子:0
- 作者:
Atanu Kumar Dogra;Saugata Basu;Sanjukta Das - 通讯作者:
Sanjukta Das
Identity consistency and General Well-Being in college students
大学生的身份一致性和总体幸福感
- DOI:
10.1007/s12646-010-0022-5 - 发表时间:
2010-08-08 - 期刊:
- 影响因子:1.3
- 作者:
S. Dhar;Pia Sen;Saugata Basu - 通讯作者:
Saugata Basu
Polynomials That Sign Represent Parity and Descartes' Rule of Signs
符号表示奇偶性的多项式和笛卡尔符号规则
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Saugata Basu;Nayantara Bhatnagar;Parikshit Gopalan;Richard J. Lipton - 通讯作者:
Richard J. Lipton
Prevalence of Myxozoan Parasites of Riverine Fishes of Jalpaiguri District, West Bengal, India
印度西孟加拉邦贾尔派古里地区河流鱼类粘虫寄生虫的流行情况
- DOI:
10.1007/s40011-021-01253-y - 发表时间:
2021-04-29 - 期刊:
- 影响因子:0
- 作者:
Prabir Banerjee;Saugata Basu;B. Modak - 通讯作者:
B. Modak
Observations on two new thelohanellid species (Myxozoa: Bivalvulida) from Indian major carps of West Bengal, India
对来自印度西孟加拉邦印度主要鲤鱼的两个新的粘虫纲物种(粘虫纲:双壳纲)的观察
- DOI:
10.1103/physrevd.98.036003 - 发表时间:
2003-07-31 - 期刊:
- 影响因子:5
- 作者:
Saugata Basu;D. P. Haldar - 通讯作者:
D. P. Haldar
Saugata Basu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saugata Basu', 18)}}的其他基金
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
- 批准号:
2128702 - 财政年份:2021
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: On the Complexity of Semidefinite and Polynomial Optimization through the Lens of Real Algebraic Geometry
合作研究:AF:小:通过实代数几何的视角探讨半定和多项式优化的复杂性
- 批准号:
2128702 - 财政年份:2021
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
AF: Small: Symmetry, Randomness and Computations in Real Algebraic Geometry
AF:小:实代数几何中的对称性、随机性和计算
- 批准号:
1910441 - 财政年份:2019
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
AF: Small: Quantitative and Algorithmic Aspects of Semi-algebraic Sets and Partitions
AF:小:半代数集和分区的定量和算法方面
- 批准号:
1618981 - 财政年份:2016
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
AF: Small: Algorithmic and Quantitative Semi-Algebraic Geometry and Applications
AF:小:算法和定量半代数几何及其应用
- 批准号:
1319080 - 财政年份:2013
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
AF: Small: Algorithmic and Quantitative Problems in Semi-algebraic and O-minimal Geometry
AF:小:半代数和 O 最小几何中的算法和定量问题
- 批准号:
0915954 - 财政年份:2009
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
Algorithmic Problems in Semi-algebraic Geometry and Topology
半代数几何和拓扑中的算法问题
- 批准号:
0634907 - 财政年份:2006
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
CAREER: Algorithmic Semi-Algebraic Geometry and Its Applications
职业:算法半代数几何及其应用
- 批准号:
0133597 - 财政年份:2002
- 资助金额:
$ 7.01万 - 项目类别:
Continuing Grant
Design and Implementation of Algorithms in Semi-Algebraic Geometry
半代数几何算法的设计与实现
- 批准号:
0049070 - 财政年份:2000
- 资助金额:
$ 7.01万 - 项目类别:
Standard Grant
相似国自然基金
偏微分变分和拟半变分不等式系统的理论、算法及其在粘弹性接触问题中的应用
- 批准号:12301395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非线性时滞最优控制问题的理论与算法研究
- 批准号:11871039
- 批准年份:2018
- 资助金额:52.0 万元
- 项目类别:面上项目
一类非光滑随机优化问题的随机二阶算法
- 批准号:11871135
- 批准年份:2018
- 资助金额:51.0 万元
- 项目类别:面上项目
二阶随机占优约束优化问题的算法及应用
- 批准号:11801503
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
半向量二层规划问题的算法设计与应用研究
- 批准号:11771058
- 批准年份:2017
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Studies on potential theory for revealing nonlinear problems
揭示非线性问题的势论研究
- 批准号:
23K03149 - 财政年份:2023
- 资助金额:
$ 7.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An improved dual projected gradient method for log-determinant semidefinite problems
解决对数行列式半定问题的改进对偶投影梯度法
- 批准号:
21K11767 - 财政年份:2021
- 资助金额:
$ 7.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explicit dual formulations of continuous optimization problems and their applications
连续优化问题的显式对偶表述及其应用
- 批准号:
21K11769 - 财政年份:2021
- 资助金额:
$ 7.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An international comparative study on under-use problems in the commons in industrialized countries
工业化国家公地利用不足问题的国际比较研究
- 批准号:
20K12285 - 财政年份:2020
- 资助金额:
$ 7.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An international comparative study on under-use problems in the commons in industrialized countries
工业化国家公地利用不足问题的国际比较研究
- 批准号:
20K12285 - 财政年份:2020
- 资助金额:
$ 7.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)