NSF-CSIRO: Towards Interpretable and Responsible Graph Modeling for Dynamic Systems

NSF-CSIRO:迈向动态系统的可解释和负责任的图形建模

基本信息

  • 批准号:
    2302786
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-15 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Real-world natural and engineered systems (e.g., food web, power grids, river networks, and ocean current networks) are inherently complicated and are driven by many factors with dependency relationships. Graphs have been commonly used to represent the structure and content of these systems for event prediction and risk estimation. To date, many graph learning methods, such as graph neural networks, have been proposed, but primarily for static graphs. In dynamic systems, the structure and content are simultaneously evolving in response to emerging trends and events, making it difficult to understand and interpret how each part of the graph functions in forming reliable models for predictions. This project strives to build a graph learning and interpretation framework for dynamic systems by combining sensor pattern discovery, node interaction and network functionality analysis, and physics- and knowledge-informed learning. The project will propose new algorithms for modeling and understanding large-scale dynamic systems using graphs, as well as develop a prototype for domain experts to analyze their data, explain what is currently happening in the system, understand the resulting consequences, and provide possible mitigation strategies. The joint effort between the US and Australian teams will help understand/uncover the dynamics of water monitoring systems for different terrain types, inland and coastal water exchange, toxic algal blooms, and resilience of rural and regional communities.The project includes three main thrusts: (1) sensor signal to feature extraction and understanding; (2) dynamic network node modeling and interpretation; and (3) dynamic network functionality and trustworthiness. The research will study signal snippet pattern (SSP) extraction and interaction analysis to understand how features interact with each other during the emergence of significant events. At the node level, new temporal encoding and spatial-temporal graph neural networks will be used to learn models for node event prediction and anomaly detection for early warning. The study of node interaction will answer why, when, and how two nodes may be interacting with each other. Beyond node level interpretation, the project will target graph functional units, estimate each snapshot graph’s contribution, and locate subgraphs with the highest significance concerning output systems. A perturbation-based post-hoc explainer will provide counterfactual explanations to enhance the explainability and trustworthiness of dynamic graph neural network systems. The research will also investigate combining physics laws and domain knowledge into dynamic graph neural networks to develop a data-efficient, robust, and responsible graph modeling framework. This is a joint project between U.S. and Australian researchers funded by the Collaboration Opportunities in Responsible and Equitable AI under the U.S. NSF and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现实世界的自然和工程系统(例如,食物网、电网、河流网络和洋流网络)本质上是复杂的,并且由许多具有依赖关系的因素驱动,图通常用于表示这些系统的结构和内容。迄今为止,已经提出了许多图学习方法,例如图神经网络,但主要针对静态图,在动态系统中,结构和内容随着新出现的趋势和事件而同时发展。 ,使得理解和解释变得困难该项目致力于通过结合传感器模式发现、节点交互和网络功能分析以及基于物理和知识的学习,构建动态系统的图学习和解释框架。该项目将提出使用图来建模和理解大规模动态系统的新算法,并为领域专家开发一个原型来分析他们的数据,解释系统中当前发生的情况,了解由此产生的后果,并提供可能的缓解措施美国和澳大利亚团队的共同努力将有所帮助。了解/揭示不同地形类型、内陆和沿海水体交换、有毒藻华以及农村和地区社区复原力的水监测系统动态。该项目包括三个主要重点:(1)传感器信号特征提取和理解; (2)动态网络节点建模和解释;(3)动态网络功能和可信度。该研究将研究信号片段模式(SSP)提取和交互分析,以了解在重大事件出现期间特征如何相互作用。节点级别,新的时间编码和时空图神经网络将用于学习节点事件预测和异常检测的模型,以进行早期预警。节点交互的研究将回答两个节点交互的原因、时间和方式。该项目将以图功能单元为目标,估计每个快照图的贡献,并定位与输出系统相关的最重要的子图。基于扰动的事后解释器将提供反事实解释,以增强动态图神经网络系统的可解释性和可信度。该研究还将研究将物理定律和领域知识结合到动态图神经网络中,以开发数据高效、稳健且负责任的图建模框架。这是美国和澳大利亚研究人员之间的联合项目,由负责任和公平合作机会资助。人工智能隶属于美国 NSF 和澳大利亚联邦科学与工业研究组织 (CSIRO)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xingquan Zhu其他文献

Using WordNet to Disambiguate Word Senses for Text Classification
使用 WordNet 消除词义歧义以进行文本分类
  • DOI:
    10.1007/978-3-540-72588-6_127
  • 发表时间:
    2007-05-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Liu;P. Scheuermann;Xingsen Li;Xingquan Zhu
  • 通讯作者:
    Xingquan Zhu
Local Contrastive Feature Learning for Tabular Data
表格数据的局部对比特征学习
Combining Simulation and Machine Learning to Recognize Function in 4D
结合仿真和机器学习来识别 4D 功能
Mining of Video Database
视频数据库挖掘
  • DOI:
    10.1007/978-1-4615-1141-0_7
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianping Fan;Xingquan Zhu;Xiaodong Lin
  • 通讯作者:
    Xiaodong Lin
A Video Database Management System for Advancing Video Database Research
用于推进视频数据库研究的视频数据库管理系统
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Aref;A. Catlin;Jianping Fan;A. Elmagarmid;M. Hammad;Ihab F. Ilyas;M. Marzouk;Xingquan Zhu
  • 通讯作者:
    Xingquan Zhu

Xingquan Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xingquan Zhu', 18)}}的其他基金

Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
  • 批准号:
    2236579
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF Student Travel Support for the 2022 IEEE International Conference on Data Mining (IEEE ICDM 2022)
NSF 学生参加 2022 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2022) 的旅行支持
  • 批准号:
    2226627
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for the 2021 IEEE International Conference on Big Data (IEEE BigData 2021)
2021 年 IEEE 国际大数据会议 (IEEE BigData 2021) 的 NSF 学生旅费补助金
  • 批准号:
    2129417
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for the 2021 IEEE International Conference on Big Data (IEEE BigData 2021)
2021 年 IEEE 国际大数据会议 (IEEE BigData 2021) 的 NSF 学生旅费补助金
  • 批准号:
    2129417
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RAPID: COVID-19 Coronavirus Testbed and Knowledge Base Construction and Personalized Risk Evaluation
RAPID:COVID-19冠状病毒测试平台和知识库建设以及个性化风险评估
  • 批准号:
    2027339
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: KMELIN: Knowledge Mining and Embedding Learning for Complex Dynamic Information Networks
III:媒介:协作研究:KMELIN:复杂动态信息网络的知识挖掘和嵌入学习
  • 批准号:
    1763452
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of Artificial Intelligence & Deep Learning (AIDL) Training and Research Laboratory
MRI:人工智能的获取
  • 批准号:
    1828181
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

NSF-CSIRO: RAI4IoE: Responsible AI for Enabling the Internet of Energy
NSF-CSIRO:RAI4IoE:负责任的人工智能实现能源互联网
  • 批准号:
    2302720
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
  • 批准号:
    2303037
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
  • 批准号:
    2303038
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NESP MaC Project 3.11 - Multi- fishery collaboration to assess population abundances and post release survival of threatened sawfish in northern Australia, 2023-2026 (CSIRO, CDU)
NESP MaC 项目 3.11 - 多渔业合作,评估澳大利亚北部受威胁锯鳐的种群丰度和放生后存活率,2023-2026 年(CSIRO、CDU)
  • 批准号:
    global : 03343c53-b189-4ae3-a931-aca9735ccf13
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
NSF-CSIRO: HCC: Small: From Legislations to Action: Responsible AI for Climate Change
NSF-CSIRO:HCC:小型:从立法到行动:负责任的人工智能应对气候变化
  • 批准号:
    2302785
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了