NSF-CSIRO: RAI4IoE: Responsible AI for Enabling the Internet of Energy

NSF-CSIRO:RAI4IoE:负责任的人工智能实现能源互联网

基本信息

  • 批准号:
    2302720
  • 负责人:
  • 金额:
    $ 59.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The energy sector is going through substantial changes fueled by two key drivers: building a zero-carbon energy sector and the digital transformation of the energy infrastructure. The advances in AI technology and energy as a service market further fuel the convergence of these two drivers, resulting in the emergence of a new field of research in the energy sector – the Internet of Energy (IoE). With IoE, renewable distributed energy resources (DERs), such as electric cars, storage batteries, wind turbines and photovoltaics, can be connected and integrated for reliable energy distribution by leveraging advanced 5G-6G networks and AI technology. This allows DER owners as prosumers to participate in the energy market and derive economic incentives. DERs are inherently asset-driven and face equitable challenges (i.e., fair, diverse and inclusive). Without equitable access, privileged individuals, groups and organizations can participate and benefit at the cost of disadvantaged groups. The real-time management of DER resources not only brings out the equity problem to the IoE, it also collects highly sensitive location, time, activity dependent data, which requires to be handled responsibly (e.g., privacy, security and safety), for AI-enhanced predictions, for optimization and prioritization services, and for automated management of flexible resources. This US-Australia joint project plans to develop Equitable and Responsible AI framework, techniques and algorithms for the Internet of Energy, coined as RAI4IoE, aiming to elevate "energy poverty" by providing secure, privacy-preserving and equitable access to the networks of DERs for every citizen. The outcome of this research will advance the knowledge of responsible AI as the first principle in developing and deploying the IoE systems and services, in facilitating DER integration, promoting deep engagement with prosumers, aggregators and network operators, and enabling flexibility market of renewable energy supply.To facilitate equitable participation of all DER owners and users in the automated flexibility market, AI enabled IOE should be governed by the responsible AI frameworks and guidelines for distributed monitoring, scheduling, management, and consumption of DERs, while exercising and guaranteeing responsible and equitable AI through ensuring AI fairness and safeguarding AI privacy and AI security in an open and continuously evolving IoE ecosystem. This project will develop responsible AI frameworks, algorithms and compliance evaluation methods for the IoE, aiming to elevate "energy poverty" by providing secure, privacy-preserving and equitable access to the networks of DERs for every citizen. The project will develop innovative solutions along three dimensions. First, it develops an equitable AI framework for ensuring IoE for all, including enabling asset-poor clients to participate in distributed learning of global DER models, and integrating privacy and fairness-aware DER data collection with policy-driven data governance. Second, it develops a suite of responsible AI Algorithms and Models to increase the end-to-end resilience of IoE against disruptive events, including irregular, sparse or corrupted data, biases in data and algorithms, privacy violations, and other fraudulent DER activities. Third, it develops a suite of responsible and equitable AI compliance methods by combining explainable AI with software testing and verification methods. The research findings will lead to new generations of AI-enhanced distributed energy resource management systems. This research will also provide graduate and under-graduate students with diverse backgrounds the unique opportunities to learn responsible AI algorithm development, and the importance of equitable access to DERs from a broad cross-disciplinary perspective.This is a joint project between U.S. and Australian researchers funded by the Collaboration Opportunities in Responsible and Equitable AI under the U.S. NSF and the Australian Commonwealth Scientific and Industrial Research Organization (CSIRO).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能源行业正在经历由两个关键驱动因素推动的重大变革:建设零碳能源行业和能源基础设施的数字化转型,人工智能技术和能源即服务市场的进步进一步推动了这两个驱动因素的融合。能源领域出现了一个新的研究领域——能源互联网(IoE),通过IoE,可以连接电动汽车、蓄电池、风力涡轮机和光伏等可再生分布式能源(DER)。并集成可靠利用先进的 5G-6G 网络和人工智能技术进行能源分配,这使得 DER 所有者作为产消者能够参与能源市场并获得经济激励,DER 本质上是资产驱动的,并面临公平的挑战(即公平、多样化和包容性)。在没有公平访问的情况下,特权个人、群体和组织可以高度参与并受益,而牺牲弱势群体的利益。分布式能源资源的实时管理不仅给万物互联带来了公平问题,还收集了敏感的地点、时间、活动。依赖的需要负责任地处理数据(例如隐私、安全和保障)、人工智能增强预测、优化和优先级服务以及灵活资源的自动化管理。这个美国-澳大利亚联合项目计划开发公平和负责任的数据。能源互联网的人工智能框架、技术和算法,被称为 RAI4IoE,旨在通过为每个人提供安全、保护隐私和公平的 DER 网络访问来消除“能源贫困”这项研究的成果将推进负责任的人工智能的知识,作为开发和部署 IoE 系统和服务的首要原则,促进 DER 集成,促进与产消者、聚合商和网络运营商的深入参与,并实现可再生能源的灵活性市场。为了促进所有 DER 所有者和用户公平参与自动化灵活性市场,人工智能驱动的 IOE 应受负责任的人工智能框架和分布式能源分布式监控、调度、管理和消耗指南的管辖,同时行使和保证负责任的和公平的人工智能通过在开放且不断发展的万物互联生态系统中确保人工智能公平性、保护人工智能隐私和人工智能安全,该项目将为万物联网开发负责任的人工智能框架、算法和合规性评估方法,旨在通过提供安全、隐私的方式来改善“能源贫困”。该项目将在三个方面开发创新的解决方案,以确保所有人享有万物互联,包括使资产匮乏的客户能够参与全球的分布式学习。分布式能源模型,其次,它开发了一套负责任的人工智能算法和模型,以提高 IoE 针对破坏性事件(包括不规则、稀疏或损坏)的能力。第三,它将可解​​释的人工智能与软件测试和验证方法相结合,开发出一套负责任且公平的人工智能合规方法。人工智能增强的分布式能源管理系统。这项研究还将为具有不同背景的研究生和本科生提供学习负责任的人工智能算法开发的独特机会,以及从广泛的跨学科角度公平获取分布式能源的重要性。是美国和澳大利亚研究人员之间的联合项目,由美国 NSF 和澳大利亚联邦科学与工业研究组织 (CSIRO) 下的负责任和公平人工智能合作机会资助。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ling Liu其他文献

Self-Adaptive Visual Background Extraction with Ghost Regions Elimination
具有鬼影区域消除功能的自适应视觉背景提取
Integrated multi-dithering controller for adaptive optics
用于自适应光学的集成多重抖动控制器
  • DOI:
    10.1117/12.736263
  • 发表时间:
    2007-09-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dimitrios N. Loizos;Ling Liu;P. Sotiriadis;G. Cauwenberghs;M. Vorontsov
  • 通讯作者:
    M. Vorontsov
Review on Design, Synthesis, and Use of High Temperature Resistant Aerogels Exceeding 800 °C
800℃以上耐高温气凝胶的设计、合成及使用综述
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pei;Ling Liu;Ming;Jing Wang;Xiaomin Ma;Jin Wang
  • 通讯作者:
    Jin Wang
Pathophysiology teaching reform during the COVID-19 pandemic
COVID-19大流行期间的病理生理学教学改革
  • DOI:
    10.1152/advan.00031.2021
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Lijun Yao;Kun Li;Jing He;Ling Liu
  • 通讯作者:
    Ling Liu
Information Monitoring on the Web: A Scalable Solution
Web 上的信息监控:可扩展的解决方案
  • DOI:
    10.1023/a:1021028509335
  • 发表时间:
    2002-11-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ling Liu;Wei Tang;David J. Buttler;C. Pu
  • 通讯作者:
    C. Pu

Ling Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ling Liu', 18)}}的其他基金

EAGER: SaTC-EDU: Privacy Enhancing Techniques and Innovations for AI-Cybersecurity Cross Training
EAGER:SaTC-EDU:人工智能-网络安全交叉培训的隐私增强技术和创新
  • 批准号:
    2038029
  • 财政年份:
    2020
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
  • 批准号:
    1946189
  • 财政年份:
    2019
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
CAREER: Nanoscale Thermal Transport in Hydrogen-Bonded Materials
职业:氢键材料中的纳米级热传输
  • 批准号:
    1751610
  • 财政年份:
    2018
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
TWC: Medium: Privacy Preserving Computation in Big Data Clouds
TWC:中:大数据云中的隐私保护计算
  • 批准号:
    1564097
  • 财政年份:
    2016
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
NetSE: Medium: Privacy-Preserving Information Network and Services for Healthcare Applications
NetSE:媒介:用于医疗保健应用程序的隐私保护信息网络和服务
  • 批准号:
    0905493
  • 财政年份:
    2009
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Continuing Grant
SGER: Distributed Spatial Partitioning Algorithms for Scalable Processing of Mobile Location Queries
SGER:用于可扩展处理移动位置查询的分布式空间分区算法
  • 批准号:
    0640291
  • 财政年份:
    2006
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
CT-ISG: Protecting Location Privacy in Location-Aware Computing: Architectures and Algorithms
CT-ISG:在位置感知计算中保护位置隐私:架构和算法
  • 批准号:
    0627474
  • 财政年份:
    2006
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Continuing Grant
A Peer to Peer Approach to Large Scale Information Monitoring
大规模信息监控的点对点方法
  • 批准号:
    0306488
  • 财政年份:
    2003
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Continuing Grant
System Support for Distributed Information Change Monitoring
分布式信息变更监控的系统支持
  • 批准号:
    9988452
  • 财政年份:
    2000
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
  • 批准号:
    2303037
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
  • 批准号:
    2303038
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
NESP MaC Project 3.11 - Multi- fishery collaboration to assess population abundances and post release survival of threatened sawfish in northern Australia, 2023-2026 (CSIRO, CDU)
NESP MaC 项目 3.11 - 多渔业合作,评估澳大利亚北部受威胁锯鳐的种群丰度和放生后存活率,2023-2026 年(CSIRO、CDU)
  • 批准号:
    global : 03343c53-b189-4ae3-a931-aca9735ccf13
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
NSF-CSIRO: Towards Interpretable and Responsible Graph Modeling for Dynamic Systems
NSF-CSIRO:迈向动态系统的可解释和负责任的图形建模
  • 批准号:
    2302786
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
NSF-CSIRO: HCC: Small: From Legislations to Action: Responsible AI for Climate Change
NSF-CSIRO:HCC:小型:从立法到行动:负责任的人工智能应对气候变化
  • 批准号:
    2302785
  • 财政年份:
    2023
  • 资助金额:
    $ 59.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了