RAPID: COVID-19 Coronavirus Testbed and Knowledge Base Construction and Personalized Risk Evaluation
RAPID:COVID-19冠状病毒测试平台和知识库建设以及个性化风险评估
基本信息
- 批准号:2027339
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The 2019 novel coronavirus disease (COVID-19) is an evolving epidemic. There is little knowledge about COVID-19’s outbreak and spread patterns, and the impact of viral evolution, demography, social behavior, cultural differences, and quarantine policies on the outbreaks. As the battle against COVID-19 continues, a deluge of information is being produced. Academia, news agencies, and governments continuously publish advances in the understanding of the virus clinical pathologies, its genome sequences, and relevant administrative policies and actions taken. Nevertheless, the dramatic outbreak differences with respect to diverse geographies, regional policies, and cultural groups also raise confusion, contradictions, and inconsistencies in disease outbreak modeling. It is therefore crucial to build a knowledge base of COVID-19 to understand the correlations and roles that different factors play in predicting the spread of the virus, thus enabling both individuals and health care officials to implement appropriate policies to mitigate the effects of the epidemic on public health and society at large. This project will create a COVID-19 coronavirus testbed and knowledge base, as well as a personalized risk evaluation tool for individuals to assess their infection risk in a dynamic environment. The technical aims of the project include two thrusts. The first creates a testbed and knowledgebase that includes information for modeling outbreak and mutation of COVID-19. This testbed will serve as a benchmark for the public to model and understand the spread of COVID-19, and eventually mitigate the negative effects of COVID-19 on public health, society, and the economy. The second thrust develops a multi-source deep neural network-based predictive tool to combine demographics, policies, regional infections, and individual information for personalized risk evaluation. As a result, the public can employ personalized information to estimate their infection risk level, using social and behavioral information (e.g., family size, shopping patterns, and dining patterns), local authority policies (e.g., school, restaurant, and movie theater closures as well as night time curfew), demographics (e.g., population age, density, and income), health condition (e.g., heart disease incidence, cancer prevalence, and substance abuse), and regional virus condition (e.g., number of infection cases in the region studied and infection rate).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019 年新型冠状病毒病 (COVID-19) 是一种不断演变的流行病,人们对 COVID-19 的爆发和传播模式以及病毒进化、人口统计、社会行为、文化差异和检疫政策对疫情的影响知之甚少。随着抗击 COVID-19 的斗争持续进行,学术界、新闻机构和政府不断发布对病毒临床病理学、基因组序列以及相关管理政策和行动的了解进展。这不同地理位置、区域政策和文化群体之间的巨大疫情差异也会引起疾病爆发模型的混乱、矛盾和不一致,因此建立 COVID-19 知识库以了解不同因素之间的相关性和作用至关重要。在预测病毒的传播方面发挥作用,从而使个人和卫生保健官员能够实施适当的政策,以减轻该流行病对公共卫生和整个社会的影响。该项目将创建一个 COVID-19 冠状病毒测试平台和知识库,以及个性化的风险评估该项目的技术目标包括两个重点:创建一个测试平台和知识库,其中包含用于对 COVID-19 爆发和突变进行建模的信息。第二个重点是开发一种基于多源深度神经网络的预测工具,以帮助公众建模和了解 COVID-19 的传播,并最终减轻 COVID-19 对公共卫生、社会和经济的负面影响。结合人口统计、政策、地区感染情况和因此,公众可以利用个性化信息,利用社会和行为信息(例如家庭规模、购物模式和就餐模式)、地方当局政策(例如学校)来估计自己的感染风险水平。 、餐厅和电影院关闭以及夜间宵禁)、人口统计数据(例如人口年龄、密度和收入)、健康状况(例如心脏病发病率、癌症患病率和药物滥用)以及区域病毒状况(例如,所研究地区的感染病例数和感染率)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BalLeRMix +: mixture model approaches for robust joint identification of both positive selection and long-term balancing selection
BalLeRMix:用于正选择和长期平衡选择的稳健联合识别的混合模型方法
- DOI:10.1093/bioinformatics/btab720
- 发表时间:2021-10
- 期刊:
- 影响因子:5.8
- 作者:Cheng, Xiaoheng;DeGiorgio, Michael;Schwartz, ed., Russell
- 通讯作者:Schwartz, ed., Russell
Community and topic modeling for infectious disease clinical trial recommendation
传染病临床试验推荐的社区和主题建模
- DOI:10.1007/s13721-021-00321-7
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Elkin, Magdalyn E.;Zhu, Xingquan
- 通讯作者:Zhu, Xingquan
OpenWGL: open-world graph learning for unseen class node classification
OpenWGL:用于看不见的类节点分类的开放世界图学习
- DOI:10.1007/s10115-021-01594-0
- 发表时间:2021-09
- 期刊:
- 影响因子:2.7
- 作者:Wu, Man;Pan, Shirui;Zhu, Xingquan
- 通讯作者:Zhu, Xingquan
Multi-Label Graph Convolutional Network Representation Learning
多标签图卷积网络表示学习
- DOI:10.1109/tbdata.2020.3019478
- 发表时间:2019-12-26
- 期刊:
- 影响因子:7.2
- 作者:Min Shi;Yufei Tang;Xingquan Zhu;Jianxun Liu
- 通讯作者:Jianxun Liu
A Machine Learning Study of COVID-19 Serology and Molecular Tests and Predictions
COVID-19 血清学、分子测试和预测的机器学习研究
- DOI:
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Elkin, Magdalyn E.;Zhu, Xingquan
- 通讯作者:Zhu, Xingquan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xingquan Zhu其他文献
Parallel proximal support vector machine for high-dimensional pattern classification
用于高维模式分类的并行近端支持向量机
- DOI:
10.1145/2396761.2398638 - 发表时间:
2012-10-29 - 期刊:
- 影响因子:0
- 作者:
Zhenfeng Zhu;Xingquan Zhu;Yangdong Ye;Yue;X. Xue - 通讯作者:
X. Xue
An empirical study of morphing on behavior-based network traffic classification
基于行为的网络流量分类的变形实证研究
- DOI:
10.1002/sec.755 - 发表时间:
2015-01-10 - 期刊:
- 影响因子:0
- 作者:
Buyun Qu;Zhibin Zhang;Xingquan Zhu;Dan Meng - 通讯作者:
Dan Meng
Learning Graph Neural Networks with Positive and Unlabeled Nodes
学习具有正节点和未标记节点的图神经网络
- DOI:
10.1145/3450316 - 发表时间:
2021-03-08 - 期刊:
- 影响因子:0
- 作者:
Man Wu;Shirui Pan;Lan Du;Xingquan Zhu - 通讯作者:
Xingquan Zhu
Social Network Privacy: Issues and Measurement
社交网络隐私:问题和衡量
- DOI:
10.1007/978-3-319-26187-4_44 - 发表时间:
2015-11-01 - 期刊:
- 影响因子:0
- 作者:
I. Casas;Jose L. Hurtado;Xingquan Zhu - 通讯作者:
Xingquan Zhu
Predictive fuzzy control for a mobile robot with nonholonomic constraints
具有非完整约束的移动机器人的预测模糊控制
- DOI:
10.1109/icar.2005.1507391 - 发表时间:
2005-07-18 - 期刊:
- 影响因子:0
- 作者:
Xianhua Jiang;Yuichi Motai;Xingquan Zhu - 通讯作者:
Xingquan Zhu
Xingquan Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xingquan Zhu', 18)}}的其他基金
NSF-CSIRO: Towards Interpretable and Responsible Graph Modeling for Dynamic Systems
NSF-CSIRO:迈向动态系统的可解释和负责任的图形建模
- 批准号:
2302786 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Taming Large-Scale Streaming Graphs in an Open World
协作研究:III:小型:在开放世界中驯服大规模流图
- 批准号:
2236579 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
NSF Student Travel Support for the 2022 IEEE International Conference on Data Mining (IEEE ICDM 2022)
NSF 学生参加 2022 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2022) 的旅行支持
- 批准号:
2226627 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 2021 IEEE International Conference on Big Data (IEEE BigData 2021)
2021 年 IEEE 国际大数据会议 (IEEE BigData 2021) 的 NSF 学生旅费补助金
- 批准号:
2129417 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the 2021 IEEE International Conference on Big Data (IEEE BigData 2021)
2021 年 IEEE 国际大数据会议 (IEEE BigData 2021) 的 NSF 学生旅费补助金
- 批准号:
2129417 - 财政年份:2021
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
MRI: Acquisition of Artificial Intelligence & Deep Learning (AIDL) Training and Research Laboratory
MRI:人工智能的获取
- 批准号:
1828181 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: KMELIN: Knowledge Mining and Embedding Learning for Complex Dynamic Information Networks
III:媒介:协作研究:KMELIN:复杂动态信息网络的知识挖掘和嵌入学习
- 批准号:
1763452 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
相似国自然基金
基于 GDF15-IL6 信号轴探究扶正解毒方逆转血管内皮衰老治疗COVID-19的作用与机制
- 批准号:82374392
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多维不平稳和长记忆性的复杂整值时间序列的建模及其在Covid-19研究中的应用
- 批准号:12301358
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向COVID-19的民众参与式主动监测系统构建及时空深度预测预警模型研究
- 批准号:82304237
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
COVID-19中线粒体囊泡抑制CD8+T细胞记忆分化的机制研究
- 批准号:82300018
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
“湿漫膜原”视角下研究加味达原饮重塑COVID-19“免疫炎症稳态”的分子机制:TLR4介导IRF3/NF-κB通路串扰
- 批准号:82374291
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
相似海外基金
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Providing useable COVID-19 health information to linguistically underserved people
RAPID:协作研究:为语言服务不足的人群提供可用的 COVID-19 健康信息
- 批准号:
2331607 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Development of multimode vacuum ionization for use in medical diagnostics
开发用于医疗诊断的多模式真空电离
- 批准号:
10697560 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
FDA Vet-LIRN Capacity-Building of Ohio ADDL to support rapid testing for COVID-19
FDA Vet-LIRN 俄亥俄州 ADDL 能力建设支持快速检测 COVID-19
- 批准号:
10829119 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Convenient rapid and portable tool for the detection of ribonucleases
用于检测核糖核酸酶的方便、快速、便携的工具
- 批准号:
10760552 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别: