Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response

合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习

基本信息

  • 批准号:
    2303037
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

The recent COVID-19 pandemic has revealed the fragility of humankind. In our highly connected world, infectious disease can swiftly transform into worldwide epidemics. A plague can rewrite history and science can limit the damage. The significance of teamwork in science has been extensively studied in the science of science literature using transdisciplinary studies to analyze the mechanisms underlying broad scientific activities. How can scientific communities rapidly form teams to best respond to pandemic crises? Artificial intelligence (AI) models have been proposed to recommend scientific collaboration, especially for those with complementary knowledge or skills. But issues related to fairness in teaming, especially how to balance group fairness and individual fairness remain challenging. Thus, developing fair AI models for recommending teams is critical for an equal and inclusive working environment. Such a need could be pivotal in the next pandemic crisis. This project will develop a decision support system to strengthen the US-Australia public health response to infectious disease outbreak. The system will help to rapidly form global scientific teams with fair teaming solutions for infectious disease control, diagnosis, and treatment. The project will include participation of underrepresented groups (Indigenous Australians and Hispanic Americans) and will provide fair teaming solutions in broad working and recruiting scenarios. This project aims to understand how scientific communities have responded to historical pandemic crises and how to best respond in the future to provide fair teaming solutions for new infectious disease crises. The project will develop a set of graph representation learning methods for fair teaming recommendation in crisis response through: 1) biomedical knowledge graph construction and learning, with novel models for emerging bio-entity extraction, relationship discovery, and fair graph representation learning for sensitive demographical attributes; 2) the recognition of fairness and the determinant of team success, with a subgraph contrastive learning-based prediction model for identifying core team units and considering trade-offs between fairness and team performance; and 3) learning to recommend fairly, with a measurement of graph-based maximum mean discrepancy, a meta learning method for fair graph representation learning, and a reinforcement learning-based search method for fair teaming recommendation. The project will support cross-disciplinary curriculum development by effectively bridging gaps in responsible AI and team science, fair project management, and risk management in science. This is a joint project between researchers from the United States and Australia and funded by the Collaboration Opportunities in Responsible and Equitable AI under the U.S. NSF and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近的COVID-19大流行暴露了人类的脆弱性。 在我们这个高度互联的世界中,传染病可以迅速转变为全球流行病。瘟疫可以改写历史,科学可以限制损失。科学中团队合作的重要性已在科学文献中得到广泛研究,利用跨学科研究来分析广泛科学活动背后的机制。 科学界如何快速组建团队以最好地应对大流行危机? 人工智能(AI)模型已被提出来推荐科学合作,特别是对于那些具有互补知识或技能的人。但与团队公平相关的问题,特别是如何平衡群体公平和个人公平仍然具有挑战性。因此,为推荐团队开发公平的人工智能模型对于平等和包容的工作环境至关重要。 这种需求可能在下一次大流行危机中至关重要。该项目将开发一个决策支持系统,以加强美国-澳大利亚对传染病爆发的公共卫生反应。 该系统将有助于快速组建全球科学团队,为传染病控制、诊断和治疗提供公平的团队解决方案。该项目将包括代表性不足的群体(澳大利亚原住民和西班牙裔美国人)的参与,并将在广泛的工作和招聘场景中提供公平的团队解决方案。该项目旨在了解科学界如何应对历史上的大流行危机,以及未来如何最好地应对,为新的传染病危机提供公平的合作解决方案。该项目将通过以下方式开发一套用于危机应对中公平团队推荐的图表示学习方法:1)生物医学知识图构建和学习,采用新兴生物实体提取、关系发现和敏感人口统计的公平图表示学习的新颖模型属性; 2)认识到公平性和团队成功的决定因素,使用基于子图对比学习的预测模型来识别核心团队单位并考虑公平性和团队绩效之间的权衡; 3)学习公平推荐,通过基于图的最大均值差异的测量、用于公平图表示学习的元学习方法以及基于强化学习的公平分组推荐搜索方法。该项目将通过有效弥合负责任的人工智能和团队科学、公平项目管理和科学风险管理方面的差距,支持跨学科课程的开发。这是美国和澳大利亚研究人员之间的联合项目,由美国 NSF 和澳大利亚联邦科学与工业研究组织 (CSIRO) 下的负责任和公平人工智能合作机会资助。该奖项反映了 NSF 的法定使命,并已获得通过使用基金会的智力优点和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yizhou Sun其他文献

The successful therapy of intravenous steroid on spontaneous and simultaneous bilateral malignant glaucoma post monocular phacoemulsification
静脉注射类固醇成功治疗单眼超声乳化术后自发性双侧恶性青光眼
  • DOI:
    10.31088/cem2020.9.1.5-10
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Rui Hua;Hong Ning;Yizhou Sun;J. Han;Xue Bai
  • 通讯作者:
    Xue Bai
Unit Selection: Learning Benefit Function from Finite Population Data
单元选择:从有限人口数据中学习效益函数
  • DOI:
    10.48550/arxiv.2210.08203
  • 发表时间:
    2022-10-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ang Li;Song Jiang;Yizhou Sun;J. Pearl
  • 通讯作者:
    J. Pearl
Representation Independent Proximity and Similarity Search
与表示无关的邻近性和相似性搜索
  • DOI:
  • 发表时间:
    2015-08-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yodsawalai Chodpathumwan;Amirhossein Aleyasen;Arash Termehchy;Yizhou Sun
  • 通讯作者:
    Yizhou Sun
Effects of harmful algal blooms on the physiological, immunity and resistance to environmental stress of bivalves: Special focus on paralytic shellfish poisoning and diarrhetic shellfish poisoning
有害藻华对双壳类生理、免疫和环境应激抵抗力的影响:特别关注麻痹性贝类中毒和腹泻性贝类中毒
  • DOI:
    10.1016/j.aquaculture.2022.739000
  • 发表时间:
    2022-10-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Karsoon Tan;Yizhou Sun;Hongkuan Zhang;Huaiping Zheng
  • 通讯作者:
    Huaiping Zheng
Enabling Automated FPGA Accelerator Optimization Using Graph Neural Networks
使用图神经网络实现自动化 FPGA 加速器优化
  • DOI:
  • 发表时间:
    2021-11-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atefeh Sohrabizadeh;Yunsheng Bai;Yizhou Sun;J. Cong
  • 通讯作者:
    J. Cong

Yizhou Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yizhou Sun', 18)}}的其他基金

Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: StructNet: Constructing and Mining Structure-Rich Information Networks for Scientific Research
III:媒介:协作研究:StructNet:为科学研究构建和挖掘结构丰富的信息网络
  • 批准号:
    1705169
  • 财政年份:
    2017
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
  • 批准号:
    1741634
  • 财政年份:
    2016
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
CAREER: Mining and Exploring Heterogeneous Information Networks with Social Factors
职业:挖掘和探索具有社会因素的异构信息网络
  • 批准号:
    1453800
  • 财政年份:
    2015
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

SYNJ1蛋白片段通过促进突触蛋白NSF聚集在帕金森病发生中的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
NSF蛋白亚硝基化修饰所介导的GluA2 containing-AMPA受体膜稳定性在卒中后抑郁中的作用及机制研究
  • 批准号:
    82071300
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
circ100783作为miR-34b分子海绵在铅暴露海马SNARE 复合体形成和突触囊泡释放中的机制研究
  • 批准号:
    81872577
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
Mon1b 协同NSF调控早期内吞体膜融合的机制研究
  • 批准号:
    31671397
  • 批准年份:
    2016
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
美国国家科学基金会组织与管理的法律制度研究
  • 批准号:
    L0822107
  • 批准年份:
    2008
  • 资助金额:
    9.5 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134747
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了