Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
基本信息
- 批准号:10648372
- 负责人:
- 金额:$ 15.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAlgorithmsAllyAmerican Joint Committee on CancerAnatomyAreaArtificial IntelligenceBioinformaticsBiological MarkersCancer BiologyCessation of lifeClinicClinicalClinical MarkersClinical PathologyCommunicationComputational ScienceConsumptionCraniofacial AbnormalitiesDataData ScienceData SetDentalDetectionDevelopmentDiagnosisDiagnostic Neoplasm StagingDisease ProgressionEvaluationExtracapsularExtramural ActivitiesFibrosisFundingFutureGoalsHPV analysisHead and Neck CancerHead and Neck Squamous Cell CarcinomaHealth Care CostsHuman PapillomavirusImageImage AnalysisKnowledgeLymphedemaMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsManualsMedical ImagingMissionModalityModelingNational Institute of Dental and Craniofacial ResearchNeck DissectionOperative Surgical ProceduresOralOrganOutcomePET/CT scanPathologicPathological StagingPathologyPatientsPositron-Emission TomographyPostoperative PeriodPrecision therapeuticsProcessPrognosisPrognostic MarkerPublishingRadiation therapyRadiology SpecialtyResearchResearch DesignResearch Project GrantsRoleSalivarySecuritySiteStagingStaging SystemTechniquesTestingThe Cancer Imaging ArchiveTimeToxic effectTranslational ResearchTreatment-related toxicityTrustValidationWorkX-Ray Computed Tomographycancer biomarkerschemoradiationclinical diagnosticsclinical implementationcomparativecost effectivecraniofacialdeep learningdiagnostic tooldisease diagnosishead and neck cancer patienthigh riskimage guidedimprovedimproved outcomeinterestlarge datasetslymph nodesmachine learning algorithmmachine learning methodmultimodalitynovelprecision medicineprediction algorithmprogramssuccesssurvival outcometargeted treatmenttooltreatment planningtumorvalidation studies
项目摘要
Project Summary
Squamous cell carcinoma of the head and neck (SCCHN) is the 6th commonest cancer in the world,
leading to >300,000 deaths annually worldwide. The extracapsular extension (ECE) of the tumor in the
lymph nodes is a significantly high-risk feature in head and neck cancers. Several studies demonstrate
that ECE results in worse survival outcomes. Pathologic confirmation, such as neck dissection, is
currently required as the gold standard for clinical identification of ECE. However, if it is ECE positive,
postoperative chemoradiotherapy has to be considered. As a result, neck dissection followed by
chemoradiation increases the toxicity, especially late toxicity such as fibrosis, and lymphedema can get
worse due to the late toxicity. If we can detect ECE during preoperative evaluation, we can select those
patients for chemoradiation before surgery. Thus, predicting ECE becomes a piece of critical
information for clinicians planning treatment. The biggest obstacles to adopting AI/ML algorithms in the
clinic are concerns about security, reliability, and transparency. If an algorithm could be developed to
not only provide an accurate prediction of ECE (and/or clinical staging), but also to provide transparent
and clinically understandable communication of how the predictive conclusion was reached, then
clinicians would more readily adopt a tool utilizing that algorithm to be an ally. The purpose of this
proposal is to optimize and pathologically validate AI/ML approaches for prognoses and diagnoses of
ECE from medical images on head and neck cancer patients, which could be further implemented as a
tool for diagnostic assistance and precision medicine. This translational research project focuses on
filling the gap of AI/ML transparency and interpretability in the automated detection of ECE in head
and neck cancers. In addition, our interpretable ML algorithm will not require the pre-annotated lymph
node areas, which is a quite cost-effective technique by eliminating the time-consuming lymph node
annotation process. We propose the following aims: 1) Validate and interpret the image-based ECE
diagnosis model and its association with head and neck cancer anatomic organ sites and HPV status.
2) Optimize the cost-effective image-based ECE diagnosis model considering clinical markers within
pathology, PETCT, and MRI results for clinical implementation. We will validate our model based on the
dataset collected from both our team and existing data collected from The Cancer Image Archive. This
proposal aligns with the mission of Oral & Salivary Cancer Biology Program and the NIDCR Special
Interest in Supporting Dental, Oral, and Craniofacial Research Using Bioinformatic, Computational, and
Data Science Approaches (NOT-DE-20-006). This study will provide the preliminary results of our
future research on the precision treatment of high-risk head and neck cancer patients. We plan to
submit an NIDCR R01 proposal in Year 2 for the precision treatment of high-risk head and neck cancer.
项目摘要
头颈部鳞状细胞癌(SCCHN)是世界上第六个最常见的癌症,
每年在全球范围内导致300,000人死亡。肿瘤的囊外延伸(ECE)
淋巴结是头颈癌的显着高危特征。几项研究表明
ECE导致生存结果较差。病理性的确认,例如颈部剖析,是
目前需要作为ECE临床识别的黄金标准。但是,如果它是肯定的,
必须考虑术后化学放疗。结果,颈部剖记随后是
化学疗法会增加毒性,尤其是晚期毒性,例如纤维化,淋巴水肿可以得到
由于毒性晚期,因此更糟。如果我们可以在术前评估期间检测ECE,我们可以选择这些
手术前进行化学放疗的患者。因此,预测ECE成为一件关键
临床医生计划治疗的信息。采用AI/ML算法的最大障碍
诊所是对安全性,可靠性和透明度的担忧。如果可以开发算法
不仅提供了ECE(和/或临床分期)的准确预测,而且还提供透明的
以及如何得出预测性结论的临床可理解的交流,然后
临床医生会更容易采用该算法成为盟友的工具。这个目的
建议是优化和病理验证AI/ML方法的预后和诊断
来自头颈癌患者的医学图像的ECE,可以进一步实施
诊断辅助和精确医学的工具。这个转化研究项目的重点
在头部自动检测中填补AI/ML透明度和可解释性的空白
和脖子癌。此外,我们可解释的ML算法将不需要预先注销的淋巴
节点区域,这是一种通过消除耗时的淋巴结,这是一种相当成本效益的技术
注释过程。我们提出以下目的:1)验证和解释基于图像的ECE
诊断模型及其与头颈癌解剖器官部位和HPV状态的关联。
2)优化基于图像的基于图像的ECE诊断模型,考虑临床标记
病理,PETCT和MRI临床实施结果。我们将根据
从我们的团队和从癌症图像档案中收集的现有数据收集的数据集。这
提案与口腔和唾液癌生物学计划和NIDCR特别的任务保持一致
有兴趣使用生物信息,计算和
数据科学方法(非DE-20-006)。这项研究将提供我们的初步结果
关于高危头颈癌患者精确治疗的未来研究。我们计划
在第2年提交NIDCR R01提案,以对高危头颈癌进行精确治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Neil Duggar其他文献
William Neil Duggar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别:
Development of Next-Generation Mass Spectrometry-based de novo RNA Sequencing for all Modifications
开发适用于所有修饰的下一代基于质谱的从头 RNA 测序
- 批准号:
10581994 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别:
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别:
Eye as a Window into Brain Health in Pediatric Hydrocephalus
眼睛是了解小儿脑积水大脑健康的窗口
- 批准号:
10659299 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别:
Design and Pilot Test of A Prediabetes Digital Patient Activation Tool
糖尿病前期数字患者激活工具的设计和试点测试
- 批准号:
10648646 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别: