NSF-CSIRO: HCC: Small: From Legislations to Action: Responsible AI for Climate Change
NSF-CSIRO:HCC:小型:从立法到行动:负责任的人工智能应对气候变化
基本信息
- 批准号:2302785
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Climate change is a key threat in contemporary life. To curb and ultimately reverse climate change governments, organizations, and citizens around the world are taking actions to reduce the carbon footprint of human activity. Achieving these goals requires the effective creation and implementation of climate interventions, ranging from the individual to the national level. Yet developing effective climate change policies poses a significant challenge. Numerous policy options are possible, and policies interact with one another in unexpected ways. The task is further complicated by the fact that there are many sources of information about climate change, but they are often laden with jargon and may conflict with one another. The goal of this project is to develop responsible artificial intelligence (AI) to help stakeholders make sense of climate change related information, so that non-experts can collectively make sense of and implement effective policies. This encompasses a wide variety of possible AI-assisted tasks, ranging from summarizing the latest news reports to explaining the outcome of new legislation. In particular, we will focus on improving policymaking and public awareness by bridging the information gap between a wealth of publicly available information and a dearth of actionable insights. This will ultimately improve the effectiveness of climate change policies. The technical aims are structured along three thrusts: 1) understanding which tasks users are willing to delegate to AI and why; 2) developing a large-scale dataset of climate change related information, ranging from legislative texts from Australia and the US to news articles and social media; and 3) developing prototypes of AI systems to demonstrate the promise of responsible AI in promoting effective climate change policies.This is a joint project between U.S. and Australian researchers funded by the Collaboration Opportunities in Responsible and Equitable AI under the U.S. NSF and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化是当代生活的一个主要威胁。为了遏制并最终扭转气候变化,世界各地的政府、组织和公民正在采取行动减少人类活动的碳足迹。实现这些目标需要有效制定和实施从个人到国家层面的气候干预措施。然而,制定有效的气候变化政策是一项重大挑战。可能有多种政策选择,而且政策之间会以意想不到的方式相互作用。由于有关气候变化的信息来源有很多,但这些信息往往充满了行话,并且可能相互冲突,这一事实使这项任务变得更加复杂。该项目的目标是开发负责任的人工智能(AI),帮助利益相关者理解气候变化相关信息,以便非专家能够共同理解并实施有效的政策。这涵盖了各种可能的人工智能辅助任务,从总结最新新闻报道到解释新立法的结果。特别是,我们将通过弥合大量公开信息与缺乏可操作见解之间的信息差距,专注于提高政策制定和公众意识。这最终将提高气候变化政策的有效性。技术目标分为三个重点:1)了解用户愿意将哪些任务委托给人工智能以及原因; 2)开发气候变化相关信息的大规模数据集,范围从澳大利亚和美国的立法文本到新闻文章和社交媒体; 3)开发人工智能系统原型,以展示负责任的人工智能在促进有效的气候变化政策方面的承诺。这是美国和澳大利亚研究人员之间的联合项目,由美国国家科学基金会和澳大利亚联邦的负责任和公平人工智能合作机会资助科学与工业研究组织 (CSIRO)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chenhao Tan其他文献
Characterizing the Value of Information in Medical Notes
描述医疗笔记中信息的价值
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chao;Shantanu Karnwal;S. Mullainathan;Z. Obermeyer;Chenhao Tan - 通讯作者:
Chenhao Tan
Probing Classifiers are Unreliable for Concept Removal and Detection
探测分类器对于概念删除和检测来说并不可靠
- DOI:
10.48550/arxiv.2207.04153 - 发表时间:
2022-07-08 - 期刊:
- 影响因子:0
- 作者:
Abhinav Kumar;Chenhao Tan;Amit Sharma - 通讯作者:
Amit Sharma
THU-IMG at TRECVID 2009
THU-IMG 参加 TRECVID 2009
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Yingyu Liang;Binbin Cao;Jianmin Li;Chenguang Zhu;Yongchao Zhang;Chenhao Tan;Ge Chen;Chen Sun;Jinhui Yuan;Mingxing Xu;Bo Zhang - 通讯作者:
Bo Zhang
No Permanent Friends or Enemies: Tracking Relationships between Nations from News
没有永远的朋友或敌人:从新闻中追踪国家之间的关系
- DOI:
10.18653/v1/n19-1167 - 发表时间:
2019-04-18 - 期刊:
- 影响因子:3.8
- 作者:
Xiaochuang Han;Eunsol Choi;Chenhao Tan - 通讯作者:
Chenhao Tan
Understanding and Predicting Human Label Variation in Natural Language Inference through Explanation
通过解释理解和预测自然语言推理中的人类标签变化
- DOI:
10.48550/arxiv.2304.12443 - 发表时间:
2023-04-24 - 期刊:
- 影响因子:0
- 作者:
Nan Jiang;Chenhao Tan;M. Marneffe - 通讯作者:
M. Marneffe
Chenhao Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chenhao Tan', 18)}}的其他基金
CAREER: Harnessing Decision-focused Explanations as a Bridge between Humans and Artificial Intelligence
职业:利用以决策为中心的解释作为人类和人工智能之间的桥梁
- 批准号:
2126602 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FAI: Towards Adaptive and Interactive Post Hoc Explanations
FAI:迈向自适应和交互式事后解释
- 批准号:
2040989 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
- 批准号:
2125113 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
2125116 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Harnessing Decision-focused Explanations as a Bridge between Humans and Artificial Intelligence
职业:利用以决策为中心的解释作为人类和人工智能之间的桥梁
- 批准号:
1941973 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
- 批准号:
1849931 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
AI-DCL: EAGER: Explanations through Diverse, Feasible, and Interactive Counterfactuals
AI-DCL:EAGER:通过多样化、可行和交互式反事实进行解释
- 批准号:
1927322 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
NSF-CSIRO: RAI4IoE: Responsible AI for Enabling the Internet of Energy
NSF-CSIRO:RAI4IoE:负责任的人工智能实现能源互联网
- 批准号:
2302720 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303037 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: NSF-CSIRO: RESILIENCE: Graph Representation Learning for Fair Teaming in Crisis Response
合作研究:NSF-CSIRO:RESILIENCE:危机应对中公平团队的图表示学习
- 批准号:
2303038 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NESP MaC Project 3.11 - Multi- fishery collaboration to assess population abundances and post release survival of threatened sawfish in northern Australia, 2023-2026 (CSIRO, CDU)
NESP MaC 项目 3.11 - 多渔业合作,评估澳大利亚北部受威胁锯鳐的种群丰度和放生后存活率,2023-2026 年(CSIRO、CDU)
- 批准号:
global : 03343c53-b189-4ae3-a931-aca9735ccf13 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
NSF-CSIRO: Towards Interpretable and Responsible Graph Modeling for Dynamic Systems
NSF-CSIRO:迈向动态系统的可解释和负责任的图形建模
- 批准号:
2302786 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant