Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
基本信息
- 批准号:2328803
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The amount of data required to be analyzed by computing systems has been increasing drastically to exascale (i.e., billions of gigabytes) and beyond. Meanwhile, owing to the boom in artificial intelligence (AI), especially Deep Neural Network (DNN), there is a need for high performance, efficient, fast, and adaptive AI-based big data processing systems. However, those requirements are not sufficiently met by existing computing solutions due to the power-wall in silicon-based semiconductor devices, memory-wall in traditional Von-Neuman computing architecture, and ultra computation- and memory-intensive DNN-based AI algorithms. This project brings together an interdisciplinary group of researchers, with expertise spanning from material science, device fabrication, integrated circuit design, computer architecture, and AI algorithms to undertake innovative device-circuit-algorithm co-design for developing an AI Processing-In-Memory (AI-PIM) system that could leverage the emerging non-volatile magnetic memory technology to implement efficient AI data processing, as well as situation-aware on-chip continual learning. This project targets to significantly improve the AI data processing energy efficiency, with 100X higher efficiency than that of state-of-the-art Graph Processing Units (GPUs). The project will greatly benefit various application areas, such as autonomous driving, robotics, personalized cognitive speech, and smart connected health, etc. This project will also involve education and workforce development activities, including K-12 STEM outreach, undergraduate/graduate training, curriculum development in semiconductor, semiconductor industry internship mentoring, cleanroom fab internships, advance integrated circuit design courses. It will also encourage broader participation of female and under-represented minorities in the microelectronics and semiconductor chip industry. This project will advance knowledge and conduct cross-layer research spanning from emerging Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) material, device, circuit, architecture, to AI algorithm exploration with three main interweaved thrusts. Thrust 1 will explore unconventional spins in SOT materials, e.g., MnPd3, and novel device geometry to fabricate a new design of 2-terminal SOT-MRAM, which simultaneously delivers unlimited endurance, nano-seconds programming time, very high cell density, deterministic programming without external magnetic field, zero leakage, and non-volatility. Leveraging the developed 2-terminal SOT-MRAM, Thrust 2 will design and tape-out an AI Processing-in-Memory (PIM) chip to implement fully digital ‘in-memory sparse multiplication-and-accumulation (MAC)’ operations that support both forward and backward computations of neural networks. Following a co-design methodology, Thrust 3 will first investigate automated network architecture search methods to construct AI model best suitable for given situation while considering our AI-PIM system constraint. This thrust will further develop novel PIM-friendly, compute- and memory-efficient, situation-aware continual learning algorithms that could minimize the power-hungry on-chip weight update (i.e., memory write) complexity, while learning new situation- and user-specific data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过计算系统分析所需的数据量越来越大,对Exascale(即数十亿GB)及以后。同时,由于人工智能(AI)的繁荣,尤其是深神经网络(DNN),因此需要高性能,高效,快速和基于自适应的AI大数据处理系统。但是,由于基于硅的半导体设备中的电壁,传统的von-neuman计算体系结构中的内存壁以及超计算和基于内存的DNN基于DNN的AI算法,因此由于现有的计算解决方案无法充分满足这些要求。该项目汇集了跨学科的研究人员,这些研究人员涵盖了材料科学,设备制造,集成电路设计,计算机架构和AI算法的专家,以进行创新的设备电路 - 叠加符号,以开发AI处理中的AI处理(AI-PIM)系统,从而可以实现效率的AI,从而实现效率AI,以实现效率的AI,以实现有效的Memelitime Memainity Memberiate Memainity Memainity Memainity Memainity Memagnite Memainity and Imerage Memainity Memainity and cor war and cor par and cor par and colagatie for cor war片上持续学习。该项目的目标是显着提高AI数据处理能源效率,效率高100倍,而最先进的图形处理单元(GPU)。该项目将极大地受益于各个应用领域,例如自动驾驶,机器人技术,个性化认知语音和智能连接的健康等。该项目还将涉及教育和劳动力发展活动,包括K-12 STEM外展,本科/研究生培训,半导体课程开发,半导体行业,半导体行业,半导体行业,清洁室内式织物,先进的巡回赛。这也将鼓励女性和代表性不足的少数民族在微电子和半导体芯片行业中的广泛参与。该项目将推进知识和进行跨层研究,从新兴的自旋轨道扭矩磁性随机访问记忆(SOT-MRAM)材料,设备,电路,体系结构到AI算法探索,并具有三个主要交互式推力。推力1将探索SOT材料中的非常规的旋转,例如MNPD3和新型设备几何形状,以制造2端SOT-MRAM的新设计,该设计同时提供无限的耐力,纳米方面的纳米方案时间,非常高的细胞密度,非常高的细胞密度,没有外部磁场,没有外部磁场,零泄漏,零泄漏,零泄漏。推力2利用开发的2端SOT-MRAM,将设计和磁带插入Memory(PIM)芯片的AI处理,以实现完全数字的“内存中稀疏乘法和积累(MAC)”操作,以支持神经网络的前进和后退计算。遵循共同设计的方法,Thrust 3将首先研究自动化网络体系结构搜索方法,以构建最适合给定情况的AI模型,同时考虑我们的AI-PIM系统约束。这一推力将进一步发展新颖的PIM友好,计算和记忆力,情境意识到的持续学习算法,这些算法可以最大程度地减少持芯片的重量更新(即记忆写入)的复杂性,同时学习新的状况和用户特定的数据,这些奖项反映了NSF的法定任务和良好的范围,这是通过评估良好的范围来进行的,这是通过评估的范围来进行的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Slimmed Asymmetrical Contrastive Learning and Cross Distillation for Lightweight Model Training
用于轻量级模型训练的精简非对称对比学习和交叉蒸馏
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Meng, Jian;Yang, Li;Lee, Kyungmin;Shin, Jinwoo;Fan, Deliang;Seo, Jae-sun
- 通讯作者:Seo, Jae-sun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deliang Fan其他文献
Hybrid polymorphic logic gate using 6 terminal magnetic domain wall motion device
使用6端磁畴壁运动器件的混合多态逻辑门
- DOI:
10.1109/iscas.2017.8050921 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Farhana Parveen;Shaahin Angizi;Zhezhi He;Deliang Fan - 通讯作者:
Deliang Fan
High performance and energy-efficient in-memory computing architecture based on SOT-MRAM
基于SOT-MRAM的高性能、高能效内存计算架构
- DOI:
10.1109/nanoarch.2017.8053725 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Zhezhi He;Shaahin Angizi;Farhana Parveen;Deliang Fan - 通讯作者:
Deliang Fan
Ultra-Low power neuromorphic computing with spin-torque devices
使用自旋扭矩设备的超低功耗神经拟态计算
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Sharad;Deliang Fan;K. Yogendra;K. Roy - 通讯作者:
K. Roy
Leveraging All-Spin Logic to Improve Hardware Security
利用全自旋逻辑提高硬件安全性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Qutaiba Alasad;Jiann;Deliang Fan - 通讯作者:
Deliang Fan
T-BFA: <underline>T</underline>argeted <underline>B</underline>it-<underline>F</underline>lip Adversarial Weight <underline>A</underline>ttack
T-BFA:<underline>T</underline>有针对性的<underline>B</underline>it-<underline>F</underline>唇形对抗重量<underline>A</underline>攻击
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:23.6
- 作者:
A. S. Rakin;Zhezhi He;Jingtao Li;Fan Yao;C. Chakrabarti;Deliang Fan - 通讯作者:
Deliang Fan
Deliang Fan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deliang Fan', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:
2342618 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2342726 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:
2349802 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:
2414603 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2411207 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2153525 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2144751 - 财政年份:2022
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:
2019548 - 财政年份:2020
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
E2CDA: Type II: Non-Volatile In-Memory Processing Unit: Memory, In-Memory Logic and Deep Neural Network
E2CDA:II 类:非易失性内存中处理单元:内存、内存中逻辑和深度神经网络
- 批准号:
2005209 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:
2003749 - 财政年份:2019
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Metaoptics-Enhanced Vertical Integration for Versatile In-Sensor Machine Vision
合作研究:FuSe:Metaoptics 增强型垂直集成,实现多功能传感器内机器视觉
- 批准号:
2416375 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Continuing Grant