CAREER: Nano Electro-chemo-mechanics and Interfacial Stability in All-solid-state Lithium Battery

职业:全固态锂电池中的纳米电化学力学和界面稳定性

基本信息

项目摘要

This Faculty Early Career Development (CAREER) grant will focus on understanding the fundamental reaction mechanisms in all-solid-state lithium batteries to identify the root causes of the failures. All-solid-state battery is one of the promising candidates as the next generation energy storage technology beyond Li-ion batteries. It uses solid electrolytes eliminating the use of the flammable liquid electrolyte and is expected to improve safety as well as the energy density. However, the solid nature of the electrolyte causes several issues such as slow ionic conductance and mechanical fractures leading to the premature failure of the device, in particular at the electrochemical interfaces where complex interactions between chemical reactions and mechanical deformations take place. The fundamental insights obtained in this study can be strategically utilized to design the solid electrolyte composition and the interfacial structure to significantly improve the ionic conduction and the mechanical stability for enhancing the performance and the cycle lifetime. It will contribute to develop advanced energy storage devices beyond current Li-ion battery technologies leading to a more sustainable society and economy in the country and the world overall. The research will also incorporate educational and outreach programs to train undergraduate/graduate students and attract K-12 students to STEM fields. In addition, the project organizes an exchange program with an international automobile company contributing to the development of the industry and produce next generation scientists/engineers who have both industrial and academic experience. This project aims to discover the underlying science and the unit processes of the failures in all-solid-state lithium batteries at the electrochemical interfaces. To achieve the goal, an in-situ transmission electron microscopy technique developed by the PI will be employed. It enables precise evaluation of the interplay between the strain/stress evolutions and the changes in the microstructure/chemistry at the interface during electrochemical reactions in atomic- and nano-scales. This method is systematically incorporated in the research to address the important questions for understanding failures in all-solid-state lithium batteries: 1) How does the microstructure of the electrolyte/electrode change during charging/discharging? 2) How does the lithium metal penetrate through the solid electrolyte? and 3) What causes the solid electrolyte to fracture? Atomistic simulations will be performed to construct a theoretical framework on the reaction kinetics and the mechanical properties at the interfaces. This, in combination with the experimental observations and measurements, further promotes the understanding of the reaction/degradation mechanisms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该教师早期职业发展(CAREER)资助将重点关注了解全固态锂电池的基本反应机制,以确定故障的根本原因。全固态电池是超越锂离子电池的下一代储能技术的有希望的候选者之一。它使用固体电解质,消除了易燃液体电解质的使用,有望提高安全性和能量密度。然而,电解质的固体性质会导致一些问题,例如缓慢的离子电导和机械断裂,导致设备过早失效,特别是在化学反应和机械变形之间发生复杂相互作用的电化学界面处。本研究中获得的基本见解可以战略性地用于设计固体电解质成分和界面结构,以显着改善离子传导和机械稳定性,从而提高性能和循环寿命。它将有助于开发超越当前锂离子电池技术的先进储能设备,从而为国家和世界带来更加可持续的社会和经济。该研究还将纳入教育和外展计划,以培训本科生/研究生并吸引 K-12 学生进入 STEM 领域。此外,该项目还与一家国际汽车公司组织交流计划,为行业发展做出贡献,并培养具有工业和学术经验的下一代科学家/工程师。该项目旨在发现全固态锂电池电化学界面失效的基础科学和单元过程。为了实现这一目标,将采用由 PI 开发的原位透射电子显微镜技术。它能够精确评估原子和纳米尺度电化学反应过程中应变/应力演变与界面微观结构/化学变化之间的相互作用。该方法被系统地纳入研究中,以解决理解全固态锂电池失效的重要问题:1)充放电过程中电解质/电极的微观结构如何变化? 2)锂金属如何渗透固体电解质? 3)什么原因导致固体电解质破裂?将进行原子模拟以构建反应动力学和界面机械性能的理论框架。这与实验观察和测量相结合,进一步促进了对反应/降解机制的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Observation and Quantitative Analysis of Lithium Dendrite Growth by In Situ Transmission Electron Microscopy
原位透射电子显微镜直接观察和定量分析锂枝晶生长
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Akihiro Kushima其他文献

Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%
  • DOI:
    10.1039/c6ee02685k
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Yang Jin;Sa Li;Akihiro Kushima;Xiaoquan Zheng;Yongming Sun;Jin Xie;Jie Sun;Weijiang Xue;Guangmin Zhou;Jiang Wu;Feifei Shi;Rufan Zhang;Zhi Zhu;Kangpyo So;Yi Cui;Ju Li
  • 通讯作者:
    Ju Li
Correction: Antioxidant properties of ALD grown nanoceria films with tunable valency
  • DOI:
    10.1039/c9bm90034a
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Ankur Gupta;Tamil S. Sakthivel;Craig J. Neal;Supriya Koul;Sushant Singh;Akihiro Kushima;Sudipta Seal
  • 通讯作者:
    Sudipta Seal
A thin multifunctional coating on a separator improves the cyclability and safety of lithium sulfur batteries
  • DOI:
    10.1039/c7sc01961k
  • 发表时间:
    2017-07
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Guiyin Xu;Qing-bo Yan;Shitong Wang;Akihiro Kushima;Peng Bai;Kai Liu;Xiaogang Zhang;Zilong Tang;Ju Li
  • 通讯作者:
    Ju Li
Antioxidant properties of ALD grown nanoceria films with tunable valency
  • DOI:
    10.1039/c9bm00397e
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Ankur Gupta;Tamil S. Sakthivel;Craig J. Neal;Supriya Koul;Sushant Singh;Akihiro Kushima;Sudipta Seal
  • 通讯作者:
    Sudipta Seal
Theoretical Analysis on Electronic Properties of Zigzag-type Single-Walled Carbon Nanotubesunder Radial Deformation
锯齿形单壁碳纳米管径向变形电子特性的理论分析
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoshitaka Umeno; Takayuki Kitamura;Akihiro Kushima
  • 通讯作者:
    Akihiro Kushima

Akihiro Kushima的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于配体保护金纳米核壳团簇的单分子光电子器件理论研究和设计
  • 批准号:
    12304300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超薄h-BN阻隔电子隧穿单纳米腔SERS策略原位解析单原子催化合成氨
  • 批准号:
    12304267
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用正电子湮没研究新型石墨烯纳米球缺陷限域铜单原子催化剂的活性起源
  • 批准号:
    12305332
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
DNA纳米结构的液态原位三维电子叠层衍射成像
  • 批准号:
    32301156
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
碳纳米管限域稀土双金属的表界面电子调控与电催化研究
  • 批准号:
    22361034
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Wearable Nano-Opto-electro-mechanic Systems
可穿戴纳米光电机械系统
  • 批准号:
    EP/X034720/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Research Grant
SNOW: Wearable Nano-Opto-electro-mechanic Systems
SNOW:可穿戴纳米光电机械系统
  • 批准号:
    EP/X034690/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Research Grant
Nano-Opto-Electro-Mechanical Integrated Oscillator Arrays for Energy-Efficient Physical Reservoir Computing (NOEMIA)
用于节能物理油藏计算的纳米光机电集成振荡器阵列 (NOEMIA)
  • 批准号:
    EP/X03495X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Research Grant
Hybrid Nano-Electro-Mechanical Systems for Controlling Light and Sensing
用于控制光和传感的混合纳米机电系统
  • 批准号:
    2749537
  • 财政年份:
    2022
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Studentship
Quantum Nano-Electro-Mechanical Systems (QNEMS)
量子纳米机电系统(QNEMS)
  • 批准号:
    RGPIN-2019-06975
  • 财政年份:
    2022
  • 资助金额:
    $ 51.34万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了