Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
基本信息
- 批准号:2019548
- 负责人:
- 金额:$ 24.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep neural network (DNN) is widely deployed for a variety of decision-making tasks such as access control, medical diagnostics, and autonomous driving. Compromise of DNN models can severely disrupt inference behavior, leading to catastrophic outcomes for security and safety-sensitive applications. While a tremendous amount of efforts have been made to secure DNNs against external adversaries (e.g., adversarial examples), internal adversaries that tamper DNN model integrity through exploiting hardware threats (i.e., fault injection attacks) can raise unprecedented concerns. This project aims to offer insights into DNN security issues due to hardware-based fault attacks, and explore ways to promote the robustness and security of future deep learning system against such internal adversaries. This project targets one critical research topic, namely securing deep learning systems against hardware-based model tampering. Recent advances in hardware fault attacks (e.g., rowhammer) can deterministically inject faults to DNN models, causing bit flips in key DNN parameters including model weights. Such threats can be extremely dangerous as they could potentially enable malicious manipulation of prediction outcomes in the inference stage by the adversary. The project seeks to systematically understand the practicality and severity of DNN model bit flip attacks in real systems and investigate software/architecture level protection techniques to secure DNNs against internal tampering. The study focuses on quantized DNNs which exhibit higher robustness against model tampering. This project will incorporate the following research efforts: (1) Investigate the vulnerability of quantized DNNs to deterministic bit flipping of model weights concerning various attack objectives; (2) Explore algorithmic approaches to enhance the intrinsic robustness of quantized DNN models; (3) Design effective and efficient system and architecture level defense mechanisms to comprehensively defeat DNN model bit flip attacks. This project will result in the dissemination of shared data, attack artifacts, algorithms and tools to the broader hardware security and AI security community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)被广泛部署,用于各种决策任务,例如访问控制,医疗诊断和自主驾驶。 DNN模型的妥协可以严重破坏推理行为,从而导致对安全性和安全敏感应用的灾难性结果。尽管已经做出了巨大的努力来确保DNN免受外部对手(例如对抗性例子),但内部对手通过利用硬件威胁(即断层注射攻击)来篡改DNN模型的完整性,这可能会引起前所未有的问题。该项目旨在通过基于硬件的故障攻击,对DNN安全问题提供见解,并探索如何促进对这种内部对手的未来深度学习系统的稳健性和安全性。 该项目针对一个关键的研究主题,即确保深度学习系统免受基于硬件的模型篡改。硬件故障攻击(例如Rowhammer)的最新进展可以确定性地将故障注入DNN型号,从而导致关键DNN参数(包括模型权重)中的位翻转。这样的威胁可能非常危险,因为它们有可能使对手在推理阶段对预测结果进行恶意操纵。该项目旨在系统地了解真实系统中DNN模型flip攻击的实用性和严重性,并研究软件/体系结构级别保护技术,以确保DNN免受内部篡改。该研究的重点是量化的DNN,对模型篡改表现出更高的鲁棒性。该项目将纳入以下研究工作:(1)调查量化DNN脆弱性,以确定模型权重的确定性位有关各种攻击目标; (2)探索算法方法,以增强量化DNN模型的内在鲁棒性; (3)设计有效,有效的系统和体系结构级别的防御机制,以全面击败DNN模型flip攻击。该项目将导致传播共享数据,攻击文物,算法和工具,以供更广泛的硬件安全和AI安全社区传播。该奖项反映了NSF的法定任务,并认为值得通过基金会的知识分子优点和更广泛的影响来通过评估来获得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T-BFA: Targeted Bit-Flip Adversarial Weight Attack
- DOI:10.1109/tpami.2021.3112932
- 发表时间:2020-07
- 期刊:
- 影响因子:23.6
- 作者:A. S. Rakin;Zhezhi He;Jingtao Li;Fan Yao;C. Chakrabarti;Deliang Fan
- 通讯作者:A. S. Rakin;Zhezhi He;Jingtao Li;Fan Yao;C. Chakrabarti;Deliang Fan
DeepSteal: Advanced Model Extractions Leveraging Efficient Weight Stealing in Memories
- DOI:10.1109/sp46214.2022.9833743
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:A. S. Rakin;Md Hafizul Islam Chowdhuryy;Fan Yao;Deliang Fan
- 通讯作者:A. S. Rakin;Md Hafizul Islam Chowdhuryy;Fan Yao;Deliang Fan
DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips
- DOI:
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Fan Yao;A. S. Rakin;Deliang Fan
- 通讯作者:Fan Yao;A. S. Rakin;Deliang Fan
KSM: Fast Multiple Task Adaption via Kernel-wise Soft Mask Learning
KSM:通过内核软掩模学习实现快速多任务适应
- DOI:10.1109/cvpr46437.2021.01363
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Yang, Li;He, Zhezhi;Zhang, Junshan;Fan, Deliang
- 通讯作者:Fan, Deliang
TBT: Targeted Neural Network Attack with Bit Trojan
- DOI:10.1109/cvpr42600.2020.01321
- 发表时间:2020-01-01
- 期刊:
- 影响因子:0
- 作者:Rakin, Adnan Siraj;He, Zhezhi;Fan, Deliang
- 通讯作者:Fan, Deliang
共 8 条
- 1
- 2
Deliang Fan其他文献
High performance and energy-efficient in-memory computing architecture based on SOT-MRAM
基于SOT-MRAM的高性能、高能效内存计算架构
- DOI:10.1109/nanoarch.2017.805372510.1109/nanoarch.2017.8053725
- 发表时间:20172017
- 期刊:
- 影响因子:0
- 作者:Zhezhi He;Shaahin Angizi;Farhana Parveen;Deliang FanZhezhi He;Shaahin Angizi;Farhana Parveen;Deliang Fan
- 通讯作者:Deliang FanDeliang Fan
Hybrid polymorphic logic gate using 6 terminal magnetic domain wall motion device
使用6端磁畴壁运动器件的混合多态逻辑门
- DOI:10.1109/iscas.2017.805092110.1109/iscas.2017.8050921
- 发表时间:20172017
- 期刊:
- 影响因子:0
- 作者:Farhana Parveen;Shaahin Angizi;Zhezhi He;Deliang FanFarhana Parveen;Shaahin Angizi;Zhezhi He;Deliang Fan
- 通讯作者:Deliang FanDeliang Fan
Ultra-Low power neuromorphic computing with spin-torque devices
使用自旋扭矩设备的超低功耗神经拟态计算
- DOI:
- 发表时间:20132013
- 期刊:
- 影响因子:0
- 作者:M. Sharad;Deliang Fan;K. Yogendra;K. RoyM. Sharad;Deliang Fan;K. Yogendra;K. Roy
- 通讯作者:K. RoyK. Roy
Leveraging All-Spin Logic to Improve Hardware Security
利用全自旋逻辑提高硬件安全性
- DOI:
- 发表时间:20172017
- 期刊:
- 影响因子:0
- 作者:Qutaiba Alasad;Jiann;Deliang FanQutaiba Alasad;Jiann;Deliang Fan
- 通讯作者:Deliang FanDeliang Fan
T-BFA: <underline>T</underline>argeted <underline>B</underline>it-<underline>F</underline>lip Adversarial Weight <underline>A</underline>ttack
T-BFA:<underline>T</underline>有针对性的<underline>B</underline>it-<underline>F</underline>唇形对抗重量<underline>A</underline>攻击
- DOI:
- 发表时间:20202020
- 期刊:
- 影响因子:23.6
- 作者:A. S. Rakin;Zhezhi He;Jingtao Li;Fan Yao;C. Chakrabarti;Deliang FanA. S. Rakin;Zhezhi He;Jingtao Li;Fan Yao;C. Chakrabarti;Deliang Fan
- 通讯作者:Deliang FanDeliang Fan
共 29 条
- 1
- 2
- 3
- 4
- 5
- 6
Deliang Fan的其他基金
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
- 批准号:23426182342618
- 财政年份:2023
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:23288032328803
- 财政年份:2023
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:23498022349802
- 财政年份:2023
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: FuSe: Efficient Situation-Aware AI Processing in Advanced 2-Terminal SOT-MRAM
合作研究:FuSe:先进 2 端子 SOT-MRAM 中的高效态势感知 AI 处理
- 批准号:24146032414603
- 财政年份:2023
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:23427262342726
- 财政年份:2023
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:24112072411207
- 财政年份:2023
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:21535252153525
- 财政年份:2022
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Standard GrantStandard Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:21447512144751
- 财政年份:2022
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
E2CDA: Type II: Non-Volatile In-Memory Processing Unit: Memory, In-Memory Logic and Deep Neural Network
E2CDA:II 类:非易失性内存中处理单元:内存、内存中逻辑和深度神经网络
- 批准号:20052092005209
- 财政年份:2019
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:20037492003749
- 财政年份:2019
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:23309402330940
- 财政年份:2024
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:23172322317232
- 财政年份:2024
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:23383012338301
- 财政年份:2024
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:23172332317233
- 财政年份:2024
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:23383022338302
- 财政年份:2024
- 资助金额:$ 24.95万$ 24.95万
- 项目类别:Continuing GrantContinuing Grant