喵ID:tBhr1q免责声明

TBT: Targeted Neural Network Attack with Bit Trojan

基本信息

DOI:
10.1109/cvpr42600.2020.01321
发表时间:
2020-01-01
期刊:
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020)
影响因子:
--
通讯作者:
Fan, Deliang
中科院分区:
其他
文献类型:
Proceedings Paper
作者: Rakin, Adnan Siraj;He, Zhezhi;Fan, Deliang研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Security of modern Deep Neural Networks (DNNs) is under severe scrutiny as the deployment of these models become widespread in many intelligence-based applications. Most recently, DNNs are attacked through Trojan which can effectively infect the model during the training phase and get activated only through specific input patterns (i.e, trigger) during inference. In this work, for the first time, we propose a novel Targeted Bit Trojan(TBT) method, which can insert a targeted neural Trojan into a DNN through bit-flip attack. Our algorithm efficiently generates a trigger specifically designed to locate certain vulnerable bits of DNN weights stored in main memory (i.e., DRAM). The objective is that once the attacker flips these vulnerable bits, the network still operates with normal inference accuracy with benign input. However, when the attacker activates the trigger by embedding it with any input, the network is forced to classify all inputs to a certain target class. We demonstrate that flipping only several vulnerable bits identified by our method, using available bit-flip techniques (i.e, row-hammer), can transform a fully functional DNN model into a Trojan-infected model. We perform extensive experiments of CIFAR-10, SVHN and ImageNet datasets on both VGG-16 and Resnet-18 architectures. Our proposed TBT could classify 92% of test images to a target class with as little as 84 bit-flips out of 88 million weight bits on Resnet-18 for CIFAR10 dataset.(1)
随着现代深度神经网络(DNN)在许多基于智能的应用中广泛部署,其安全性受到严格审视。最近,DNN受到木马攻击,木马可在训练阶段有效感染模型,并且仅在推理过程中通过特定输入模式(即触发器)被激活。在这项工作中,我们首次提出一种新颖的靶向比特木马(TBT)方法,该方法可通过比特翻转攻击将靶向神经木马插入DNN。我们的算法有效地生成一个触发器,专门用于定位存储在主存储器(即DRAM)中的DNN权重的某些易受攻击的比特。目标是一旦攻击者翻转这些易受攻击的比特,网络在良性输入下仍能以正常的推理精度运行。然而,当攻击者通过将触发器嵌入任何输入来激活它时,网络会被迫将所有输入分类到某个目标类别。我们证明,使用现有的比特翻转技术(即行锤)仅翻转我们的方法所识别的几个易受攻击的比特,就可以将一个功能完整的DNN模型转变为一个被木马感染的模型。我们在VGG - 16和Resnet - 18架构上对CIFAR - 10、SVHN和ImageNet数据集进行了大量实验。对于CIFAR10数据集,我们提出的TBT在Resnet - 18的8800万个权重比特中仅翻转84个比特,就可以将92%的测试图像分类到目标类别。
参考文献(36)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Fan, Deliang
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓