ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
基本信息
- 批准号:2224307
- 负责人:
- 金额:$ 72.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Novel technologies that are simple and cost-effective for fabricating highly sensitive biosensors may significantly benefit a wide range of important applications, such as early detection of epidemic/pandemic infectious disease, cancers, and other biological agents. A major challenge for such detection is the low concentration of the target molecules. This project will leverage the fluid flow around a thermal bubble on a surface, concentrating and depositing the target molecules in the liquid sample, to enhance their detectability. The PI will perform microgravity experiments at the International Space Station to investigate the concentration/deposition processes, which will enable the development of improved sensing techniques for disease detection, cancer diagnosis and environmental monitoring. Given the potential transformative impacts for terrestrial applications, this project is aligned with the mission of CASIS to leverage space research to benefit life on earth. This research project will also educate and train graduate and undergraduate students from under-represented groups at Notre Dame. Through this project, the PI will cultivate a future workforce for the U.S. manufacturing and healthcare industries. The PI will also outreach to the local high schools and participate in local area science events to extend the outreach of this project. This project aims to understand the flow phenomena around a thermal bubble generated on a surface by a laser excitation. The flow pattern around the bubble can collect and eventually deposit colloidal particles in the liquid onto the surface. The overarching goal of this project is to understand the flow and deposition mechanism in order to control the deposition of suspended particles and thus enable new technologies for sensing applications. The PI will combine the microgravity experiments in the ISS and comparative terrestrial experiments complemented by multi-physics modeling to achieve this understanding. The micro-gravity environment in the ISS will provide a unique platform to unlock the fundamental mechanism of bubble nucleation, growth, and detachment. The lack of thermal convection in the ISS will allow the decoupling of the contribution of Marangoni effect from thermal convection effect to elucidate their roles in collecting colloidal particles and depositing them on the surface. This research will improve the understanding of the fundamental opto-thermal-fluidic mechanism of the thermal bubble deposition process, which will contribute to advancing the fields of nanoscale interactions, thermofluids and biosensing. This research project will also educate and train graduate and undergraduate students from under-represented groups at Notre Dame. Through this project, the PI will cultivate a future workforce for the U.S. manufacturing and healthcare industries. The PI will also outreach to the local high schools and participate in local area science events to extend the outreach of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用于制造高灵敏度生物传感器的简单且具有成本效益的新技术可能会显着有利于广泛的重要应用,例如流行病/大流行性传染病、癌症和其他生物制剂的早期检测。这种检测的主要挑战是目标分子浓度低。该项目将利用表面热气泡周围的流体流动,浓缩并沉积液体样品中的目标分子,以增强其可检测性。该项目负责人将在国际空间站进行微重力实验,以研究浓度/沉积过程,这将有助于开发用于疾病检测、癌症诊断和环境监测的改进传感技术。考虑到对地面应用的潜在变革性影响,该项目与 CASIS 的使命相一致,即利用空间研究造福地球上的生命。该研究项目还将教育和培训圣母大学代表性不足群体的研究生和本科生。通过这个项目,PI 将为美国制造业和医疗保健行业培养未来的劳动力。 PI 还将推广到当地高中并参加当地的科学活动,以扩大该项目的推广范围。该项目旨在了解激光激发在表面上产生的热气泡周围的流动现象。气泡周围的流动模式可以收集并最终将液体中的胶体颗粒沉积到表面上。该项目的总体目标是了解流动和沉积机制,以控制悬浮颗粒的沉积,从而实现传感应用的新技术。 PI 将结合国际空间站的微重力实验和地面比较实验,并辅以多物理模型来实现这一认识。国际空间站的微重力环境将提供一个独特的平台来解开气泡成核、生长和脱离的基本机制。国际空间站中缺乏热对流将使马兰戈尼效应与热对流效应的贡献分离,以阐明它们在收集胶体颗粒并将其沉积在表面上的作用。这项研究将增进对热气泡沉积过程的基本光热流体机制的理解,这将有助于推进纳米级相互作用、热流体和生物传感领域的发展。该研究项目还将教育和培训圣母大学代表性不足群体的研究生和本科生。通过这个项目,PI 将为美国制造业和医疗保健行业培养未来的劳动力。 PI 还将深入当地高中并参加当地科学活动,以扩大该项目的影响范围。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analytical model of optical force on supercavitating plasmonic nanoparticles
超空泡等离子体纳米颗粒的光学力分析模型
- DOI:10.1364/oe.491699
- 发表时间:2023-06
- 期刊:
- 影响因子:3.8
- 作者:Mandal, Amartya;Lee, Eungkyu;Luo, Tengfei
- 通讯作者:Luo, Tengfei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tengfei Luo其他文献
Probabilistic Physics-integrated Neural Differentiable Modeling for Isothermal Chemical Vapor Infiltration Process
等温化学蒸气渗透过程的概率物理集成神经微分建模
- DOI:
10.48550/arxiv.2311.07798 - 发表时间:
2023-11-13 - 期刊:
- 影响因子:0
- 作者:
Deepak Akhare;Zeping Chen;R. Gulotty;Tengfei Luo;Jian - 通讯作者:
Jian
Simultaneous Solar-Driven Seawater Desalination and Continuous Oil Recovery
同步太阳能驱动海水淡化和连续石油采收
- DOI:
10.2139/ssrn.4241776 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:0
- 作者:
Shiwen Wu;Ruda Jian;Siyu Tian;Long Zhou;Tengfei Luo;Guoping Xiong - 通讯作者:
Guoping Xiong
Thermal conductivity of organic bulk heterojunction solar cells: anunusual binary mixing effect
- DOI:
10.1039/c4cp04099f - 发表时间:
2014-10 - 期刊:
- 影响因子:3.3
- 作者:
Zhi Guo;Doyun Lee;Joseph Strzalka;Haifeng Gao;Libai Huang;Ali M. Khounsary;Tengfei Luo - 通讯作者:
Tengfei Luo
The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces
- DOI:
10.1039/c7cp02982a - 发表时间:
2017-06 - 期刊:
- 影响因子:3.3
- 作者:
Eungkyu Lee;Tengfei Luo - 通讯作者:
Tengfei Luo
An Ultra-soft Thermal Diode
超软热敏二极管
- DOI:
10.1016/j.mtphys.2024.101450 - 发表时间:
2023-01-11 - 期刊:
- 影响因子:11.5
- 作者:
Yunsong Pang;Junhong Li;Zhibin Wen;Ting Liang;Shan Gao;Min Yang;Dezhao Huang;Jianbin Xu;Tengfei Luo;Xiaoliang Zeng;Rong Sun - 通讯作者:
Rong Sun
Tengfei Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tengfei Luo', 18)}}的其他基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
- 批准号:
2124850 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning
使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物
- 批准号:
2102592 - 财政年份:2021
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
- 批准号:
1949910 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
- 批准号:
2040565 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
- 批准号:
2001079 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
- 批准号:
1937923 - 财政年份:2020
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
- 批准号:
1931850 - 财政年份:2019
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
- 批准号:
1706039 - 财政年份:2017
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
相似国自然基金
液相气泡放电等离子体与重油模型化合物相互作用的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等离子体片气泡深度注入在内磁层和电离层中产生的效应
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
低温等离子体耦合微纳米气泡降解水中多氟及全氟化合物的研究
- 批准号:51979039
- 批准年份:2019
- 资助金额:61 万元
- 项目类别:面上项目
水中气泡纳秒脉冲放电冲击波精准调控和声能效率优化
- 批准号:51907108
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
微气泡两相流高压脉冲等离子体(MTHP)深度处理印染废水研究
- 批准号:51578122
- 批准年份:2015
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
- 批准号:
EP/Y037294/1 - 财政年份:2025
- 资助金额:
$ 72.62万 - 项目类别:
Research Grant
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Standard Grant
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
- 批准号:
EP/Z000912/1 - 财政年份:2024
- 资助金额:
$ 72.62万 - 项目类别:
Fellowship
The interaction of plasmonic nanoparticles with adsorbates
等离子体纳米颗粒与吸附物的相互作用
- 批准号:
2897349 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Studentship
Rapid Plasmonic PCR Device and Platform for Single Step Disease Detection and Treatment To Enable Infectious Disease Symptom To Treatment In Minutes
用于单步疾病检测和治疗的快速等离子 PCR 设备和平台,可在几分钟内从传染病症状到治疗
- 批准号:
10076382 - 财政年份:2023
- 资助金额:
$ 72.62万 - 项目类别:
Grant for R&D