Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change

合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应

基本信息

  • 批准号:
    1937923
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Water desalination and wastewater treatment rely on the consumption of significant amounts of energy. For distributed water treatment systems, the cost can be ten times higher than that of the centralized plants. The ability to use renewable energy such as solar energy to replace completely, or in part, the energy needed for water treatment may lead to substantial impacts on the sustainability of the global energy and water supply. Efficient solar-thermal energy conversion for vapor generation is an important green technology that could reduce the energy demands of water desalination and wastewater treatment. However, the low vapor evaporation rate remains a challenge for many practical applications. Graphene plasmonics, which refers to the collective electron oscillation in graphene flakes when excited by light, is believed to contribute to the enhanced solar-to-thermal conversion efficiency of graphene nanopetal structures. In this research project, computer modeling and experiments will be combined to understand the synergistic effects of graphene plasmonics and spatial confinement on thermodynamic properties of water and the solar-driven water evaporation rate. The knowledge gained from this study will assist in developing new graphene plasmonic materials for solar thermal evaporation applications. The project will also include significant educational activities, such as outreach programs for local K-12 students and teachers and undergraduate research programs with open-ended design projects.The goal of this research project is to understand how the plasmon resonance-induced local electric field due to extreme light confinement along the unique nanopetal edges either aligns or dis-aligns water molecular dipoles confined between the vertically freestanding graphene flakes in a porous structure. The research project integrates full electromagnetic wave calculations, molecular simulations, and experimental validation. Some of the specific objectives include understanding the fundamental mechanisms governing the influence of graphene plasmonics-induced thermodynamic property change of nano-confined water on vapor evaporation rate. A combination of electromagnetic wave calculations and molecular simulations will be used to model this system. Additionally, the researchers will validate the modeling results through experiments on solar-driven water phase change mediated by anomalous near-infrared plasmons in uniquely synthesized porous graphene nanopetal structures. This project is expected to reveal new mechanisms of graphene plasmon resonance-mediated water phase transition, which may contribute to improving solar-thermal energy conversion technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海水淡化和废水处理依赖于大量能源的消耗。 对于分布式水处理系统,成本可能比集中式工厂高十倍。使用太阳能等可再生能源完全或部分替代水处理所需能源的能力可能会对全球能源和水供应的可持续性产生重大影响。 用于蒸汽产生的高效太阳能热能转换是一项重要的绿色技术,可以减少海水淡化和废水处理的能源需求。 然而,低蒸气蒸发率对于许多实际应用来说仍然是一个挑战。石墨烯等离子体激元是指石墨烯薄片中受光激发时的集体电子振荡,被认为有助于提高石墨烯纳米花瓣结构的太阳能到热能的转换效率。在该研究项目中,计算机建模和实验将结合起来,以了解石墨烯等离子体激元和空间限制对水的热力学性质和太阳能驱动的水蒸发速率的协同效应。从这项研究中获得的知识将有助于开发用于太阳能热蒸发应用的新型石墨烯等离子体材料。该项目还将包括重要的教育活动,例如针对当地 K-12 学生和教师的外展计划以及具有开放式设计项目的本科生研究计划。该研究项目的目标是了解等离子体共振如何引起局部电场由于沿着独特的纳米花瓣边缘的极端光限制,使得限制在多孔结构中垂直独立的石墨烯薄片之间的水分子偶极子对齐或不对齐。 该研究项目集成了完整的电磁波计算、分​​子模拟和实验验证。 一些具体目标包括了解石墨烯等离子体激元引起的纳米约束水热力学性质变化对蒸气蒸发速率影响的基本机制。 将结合电磁波计算和分子模拟来对该系统进行建模。 此外,研究人员将通过独特合成的多孔石墨烯纳米花瓣结构中异常近红外等离子体介导的太阳能驱动水相变实验来验证建模结果。该项目有望揭示石墨烯等离激元共振介导的水相变新机制,可能有助于改进太阳能热能转换技术。该奖项反映了NSF的法定使命,并通过利用基金会的智力优势进行评估,认为值得支持以及更广泛的影响审查标准。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Surface Bubble Growth in Plasmonic Nanoparticle Suspension
等离激元纳米颗粒悬浮液中的表面气泡生长
  • DOI:
    10.1021/acsami.0c05448
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Zhang, Qiushi;Neal, Robert Douglas;Huang, Dezhao;Neretina, Svetlana;Lee, Eungkyu;Luo, Tengfei
  • 通讯作者:
    Luo, Tengfei
Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces
由单高斯光束光学推拉力驱动的弹道超空泡纳米颗粒
  • DOI:
    10.1038/s41467-020-16267-9
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Lee, Eungkyu;Huang, Dezhao;Luo, Tengfei
  • 通讯作者:
    Luo, Tengfei
Eggshell Biowaste-Derived Flexible and Self-Cleaning Films for Efficient Subambient Daytime Radiative Cooling
蛋壳生物废物衍生的柔性自清洁薄膜,可实现高效的低温日间辐射冷却
  • DOI:
    10.1021/acsami.3c06296
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Wu, Shiwen;Jian, Ruda;Zhou, Lyu;Tian, Siyu;Luo, Tengfei;Cui, Shuang;Zhao, Bo;Xiong, Guoping
  • 通讯作者:
    Xiong, Guoping
Biocompatible Direct Deposition of Functionalized Nanoparticles Using Shrinking Surface Plasmonic Bubble
使用收缩表面等离子体气泡生物相容性直接沉积功能化纳米粒子
  • DOI:
    10.1002/admi.202000597
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Moon, Seunghyun;Zhang, Qiushi;Huang, Dezhao;Senapati, Satyajyoti;Chang, Hsueh‐Chia;Lee, Eungkyu;Luo, Tengfei
  • 通讯作者:
    Luo, Tengfei
Bio-inspired salt-fouling resistant graphene evaporators for solar desalination of hypersaline brines
用于超咸水太阳能淡化的仿生防盐垢石墨烯蒸发器
  • DOI:
    10.1016/j.desal.2022.116197
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Wu, Shiwen;Tian, Siyu;Jian, Ruda;Zhou, Long;Luo, Tengfei;Xiong, Guoping
  • 通讯作者:
    Xiong, Guoping
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tengfei Luo其他文献

Simultaneous Solar-Driven Seawater Desalination and Continuous Oil Recovery
同步太阳能驱动海水淡化和连续石油采收
  • DOI:
    10.2139/ssrn.4241776
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiwen Wu;Ruda Jian;Siyu Tian;Long Zhou;Tengfei Luo;Guoping Xiong
  • 通讯作者:
    Guoping Xiong
Probabilistic Physics-integrated Neural Differentiable Modeling for Isothermal Chemical Vapor Infiltration Process
等温化学蒸气渗透过程的概率物理集成神经微分建模
  • DOI:
    10.48550/arxiv.2311.07798
  • 发表时间:
    2023-11-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deepak Akhare;Zeping Chen;R. Gulotty;Tengfei Luo;Jian
  • 通讯作者:
    Jian
An Ultra-soft Thermal Diode
超软热敏二极管
  • DOI:
    10.1016/j.mtphys.2024.101450
  • 发表时间:
    2023-01-11
  • 期刊:
  • 影响因子:
    11.5
  • 作者:
    Yunsong Pang;Junhong Li;Zhibin Wen;Ting Liang;Shan Gao;Min Yang;Dezhao Huang;Jianbin Xu;Tengfei Luo;Xiaoliang Zeng;Rong Sun
  • 通讯作者:
    Rong Sun
Thermal conductivity of organic bulk heterojunction solar cells: anunusual binary mixing effect
  • DOI:
    10.1039/c4cp04099f
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zhi Guo;Doyun Lee;Joseph Strzalka;Haifeng Gao;Libai Huang;Ali M. Khounsary;Tengfei Luo
  • 通讯作者:
    Tengfei Luo
The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces

Tengfei Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tengfei Luo', 18)}}的其他基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
  • 批准号:
    2224307
  • 财政年份:
    2022
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
  • 批准号:
    2124850
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning
使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物
  • 批准号:
    2102592
  • 财政年份:
    2021
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
  • 批准号:
    1949910
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
  • 批准号:
    2040565
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
  • 批准号:
    2001079
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
  • 批准号:
    1931850
  • 财政年份:
    2019
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
  • 批准号:
    1706039
  • 财政年份:
    2017
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

面向开放场景的多模态视频表征与理解研究
  • 批准号:
    62376069
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度理解的大规模互联网虚假新闻检测研究
  • 批准号:
    62302333
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多模态数学问题理解和类人解答方法研究
  • 批准号:
    62376012
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
  • 批准号:
    62376261
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327826
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
  • 批准号:
    2327827
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318851
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
  • 批准号:
    2342025
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349883
  • 财政年份:
    2024
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了