Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning

使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物

基本信息

  • 批准号:
    2102592
  • 负责人:
  • 金额:
    $ 42.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Membrane-based separation technologies have great promise to dramatically drive down the energy, carbon, and water intensity of traditional thermally-driven separation processes such as distillation. The creation of novel membrane materials with tailorable yet predictable structure and properties holds the key to providing low energy solutions to some of the nation’s most challenging and important separations, such as in clean energy industries (e.g., hydrogen gas purification) and environmental remediation (e.g., carbon capture). However, the development cycles of such materials are usually exceptionally long due to the requisite trial-and-error strategy employed. This project aims to combine simulations, machine learning, and experimental studies to accelerate the development of high-performance polymer gas separation membranes. The knowledge gained from this project will enable a more rational strategy for the design of advanced materials for energy-efficient separations and provide potentially revolutionary solutions to the grand materials challenges in the membrane separation field. This project will also strengthen the multi-disciplinary collaboration for incorporating machine learning into polymeric membrane materials. In addition to advancing knowledge and technology, the research will be integrated with graduate and undergraduate student education and training opportunities and through local K-12 student and teacher outreach programs. The overarching goal of this project is to accelerate the discovery and enrich the fundamental understanding of highly permeable and selective polymer gas separation membranes using an active learning scheme that synergistically combines molecular simulations, machine learning, and experiments. The scope of this project will include (1) establishing a standardized polymer database by combining existing database, open literature, and high-throughput molecular simulations; (2) employing transfer learning, molecular simulations, and experiments to develop accurate surrogate models that map out chemistry-property relations for polymer gas separation membranes; (3) establishing a Bayesian Optimization framework to guide the iteration of transfer learning and experimental discoveries; and (4) using classification together with detailed molecular simulation and experimental study to understand molecular features impacting polymer free volume architecture and gas transport properties. The Materials Informatics-based active learning approach to be established in this project will be a valuable strategy for the field concerning polymer separation membranes, and it can be readily extended to design polymers with other desirable properties beyond gas separation, which can save the cost and time traditionally required for new material development in general.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基于膜的分离技术有望大幅降低传统热驱动分离过程(例如蒸馏)的能源、碳和水强度,具有可定制且可预测的结构和性能的新型膜材料的创造是提供低能耗的关键。为国家一些最具挑战性和最重要的分离提供能源解决方案,例如清洁能源行业(例如氢气净化)和环境修复(例如碳捕获)。然而,此类材料的开发周期通常非常长。该项目旨在结合模拟、机器学习和实验研究,加速高性能聚合物气体分离膜的开发,从该项目中获得的知识将为更合理的策略提供支持。除了先进的知识之外,该项目还将加强多学科合作,将机器学习融入到聚合物膜材料中。和技术,该研究将与研究生和本科生相结合学生教育和培训机会以及通过当地 K-12 学生和教师推广计划 该项目的总体目标是利用协同结合的主动学习计划,加速发现并丰富对高渗透性和选择性聚合物气体膜分离的基本理解。该项目的范围将包括(1)结合现有数据库、开放文献和高通量分子模拟建立标准化聚合物数据库;(2)采用迁移学习、分子模拟和实验来开发绘制聚合物气体分离膜的化学性质关系的准确替代模型;(3)建立贝叶斯优化框架来指导迁移学习和实验发现的迭代;(4)使用分类以及详细的分子模拟和实验研究来了解影响聚合物自由体积结构和气体传输特性的分子特征,该项目中建立的基于材料信息学的主动学习方法将是聚合物分离膜领域的一个有价值的策略,并且可以很容易地扩展到设计聚合物该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph Rationalization with Environment-based Augmentations
通过基于环境的增强进行图形合理化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tengfei Luo其他文献

Probabilistic Physics-integrated Neural Differentiable Modeling for Isothermal Chemical Vapor Infiltration Process
等温化学蒸气渗透过程的概率物理集成神经微分建模
  • DOI:
    10.48550/arxiv.2311.07798
  • 发表时间:
    2023-11-13
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deepak Akhare;Zeping Chen;R. Gulotty;Tengfei Luo;Jian
  • 通讯作者:
    Jian
Simultaneous Solar-Driven Seawater Desalination and Continuous Oil Recovery
同步太阳能驱动海水淡化和连续石油采收
  • DOI:
    10.2139/ssrn.4241776
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shiwen Wu;Ruda Jian;Siyu Tian;Long Zhou;Tengfei Luo;Guoping Xiong
  • 通讯作者:
    Guoping Xiong
Thermal conductivity of organic bulk heterojunction solar cells: anunusual binary mixing effect
  • DOI:
    10.1039/c4cp04099f
  • 发表时间:
    2014-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Zhi Guo;Doyun Lee;Joseph Strzalka;Haifeng Gao;Libai Huang;Ali M. Khounsary;Tengfei Luo
  • 通讯作者:
    Tengfei Luo
The role of optical phonons in intermediate layer-mediated thermal transport across solid interfaces
An Ultra-soft Thermal Diode
超软热敏二极管
  • DOI:
    10.1016/j.mtphys.2024.101450
  • 发表时间:
    2023-01-11
  • 期刊:
  • 影响因子:
    11.5
  • 作者:
    Yunsong Pang;Junhong Li;Zhibin Wen;Ting Liang;Shan Gao;Min Yang;Dezhao Huang;Jianbin Xu;Tengfei Luo;Xiaoliang Zeng;Rong Sun
  • 通讯作者:
    Rong Sun

Tengfei Luo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tengfei Luo', 18)}}的其他基金

Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
  • 批准号:
    2341995
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
  • 批准号:
    2332270
  • 财政年份:
    2024
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
  • 批准号:
    2224307
  • 财政年份:
    2022
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
  • 批准号:
    2124850
  • 财政年份:
    2021
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
  • 批准号:
    1949910
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
  • 批准号:
    2040565
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
  • 批准号:
    2001079
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Continuing Grant
Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
  • 批准号:
    1937923
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
  • 批准号:
    1931850
  • 财政年份:
    2019
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
  • 批准号:
    1706039
  • 财政年份:
    2017
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Standard Grant

相似国自然基金

面向智能化仿真社会实验的具身人物视觉理解与身份构建
  • 批准号:
    62302296
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向真实场景的基于人体关节点的行为理解研究
  • 批准号:
    62302093
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
油菜雄性不育恢复基因BnaMs3抑制不育基因Bnams4b毒害的分子机理解析
  • 批准号:
    32372178
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SlHSD2调控番茄果实角质层发育的机理解析
  • 批准号:
    32302571
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
山葡萄VaZFHD4-VaNAC26模块调控茉莉酸合成应答干旱胁迫的分子机理解析
  • 批准号:
    32302517
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dynamic Structural Analysis of Protein Translocation Across Membrane by Cryo-EM
利用冷冻电镜对蛋白质跨膜易位进行动态结构分析
  • 批准号:
    21H02452
  • 财政年份:
    2021
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
多孔質媒体内の階層的変化を記述する偏微分方程式と自由境界問題の連立系の研究
描述多孔介质层次变化的偏微分方程和自由边界问题耦合系统的研究
  • 批准号:
    20K03704
  • 财政年份:
    2020
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
付着共生の成立や維持を図る外部共生菌の生理・形態学的な特徴の解明
阐明建立和维持贴壁共生的外共生细菌的生理和形态特征
  • 批准号:
    17J11518
  • 财政年份:
    2017
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ナノ多孔性錯体の粒径・形状制御と表面特性解析に立脚した特異的吸着挙動の精密制御
基于纳米多孔复合物的粒径/形状控制和表面性质分析精确控制特定吸附行为
  • 批准号:
    15J08218
  • 财政年份:
    2015
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
量子化学論的平衡物性推算に基づく超臨界溶体急速膨張法での薬物の粒子設計技術の開発
基于量子化学平衡物性估计的超临界溶液快速膨胀法药物颗粒设计技术开发
  • 批准号:
    12J09412
  • 财政年份:
    2012
  • 资助金额:
    $ 42.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了