RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models

RI:小:非凸低复杂度模型的不确定性量化

基本信息

  • 批准号:
    2218773
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Emerging applications in data science often involve estimating an enormous number of parameters from a highly incomplete and noisy set of measurements. In order for these applications to support modern scientific discovery and decision making, however, it is necessary to seek not merely reasonable estimations for the parameters, but perhaps more crucially, a trustworthy interpretation of the estimations and their implications. For instance, what reassurances can we offer about the quality of the estimates in hand? Can we quantify the uncertainty of our estimates due to the imperfectness of the data? Providing valid and quantitative answers to such questions is a crucial step in ensuring that: the scientific discovery and decision made based on our estimate are informative and trustworthy. Nevertheless, the existing statistical toolbox remains highly inadequate in providing measures of uncertainty for large-scale estimation methods, particularly in those scenarios where the availability of data samples is severely limited. This limits the overall value of the estimates and hampers scientific and decision-making processes. Some example application areas include: joint shape matching in computer vision and water-fat separation in medical imaging. Motivated by the above issues, the overarching goal of this project is to develop new foundational theory that integrates statistical assessment and algorithm design in an end-to-end manner, allowing for optimal inferential procedures for various nonconvex low-complexity models. Blending large-scale optimization techniques with statistical thinking, the proposed project seeks to develop a novel suite of distributional theory that enables valid uncertainty assessment for various nonconvex low-complexity models. Specifically, this project consists of the following research. First, develop a principled approach to construct optimal confidence intervals for unknown continuous parameters, on the basis of novel nonconvex estimation and de-biasing methods. Second, develop fast nonconvex algorithms and efficient uncertainty assessment procedures to reason about unknown discrete variables. Third, investigate the intimate connection between convex relaxation and nonconvex optimization, thus enabling a unified uncertainty quantification framework to accommodate both approaches. All research thrusts are motivated by, and will ultimately be tested on concrete practical applications. This project will significantly advance the fundamental techniques of uncertainty quantification in data-driven applications, and will enrich the foundations for mathematical optimization, data analytics, and statistical modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据科学中的新兴应用通常涉及从高度不完整且嘈杂的测量集中估计大量参数。 然而,为了让这些应用支持现代科学发现和决策,不仅需要寻求对参数的合理估计,而且也许更重要的是,需要对估计及其含义进行可靠的解释。例如,我们可以对现有估算的质量提供哪些保证?我们能否量化由于数据不完善而导致的估计的不确定性? 为此类问题提供有效和定量的答案是确保以下方面的关键一步:根据我们的估计做出的科学发现和决策是信息丰富且值得信赖的。然而,现有的统计工具箱在为大规模估计方法提供不确定性度量方面仍然非常不足,特别是在数据样本的可用性严重有限的情况下。这限制了估计的总体价值,并阻碍了科学和决策过程。一些示例应用领域包括:计算机视觉中的关节形状匹配和医学成像中的水脂肪分离。受上述问题的推动,该项目的总体目标是开发新的基础理论,以端到端的方式集成统计评估和算法设计,从而为各种非凸低复杂度模型提供最佳的推理过程。该项目将大规模优化技术与统计思维相结合,旨在开发一套新颖的分布理论,能够对各种非凸低复杂性模型进行有效的不确定性评估。具体来说,该项目包括以下研究。首先,基于新颖的非凸估计和去偏差方法,开发一种原则性方法来构建未知连续参数的最佳置信区间。其次,开发快速非凸算法和有效的不确定性评估程序来推理未知的离散变量。第三,研究凸松弛和非凸优化之间的密切联系,从而使统一的不确定性量化框架能够适应这两种方法。所有的研究主旨都受到具体实际应用的推动,并最终将在具体的实际应用中得到检验。该项目将显着推进数据驱动应用中不确定性量化的基本技术,并将丰富数学优化、数据分析和统计建模的基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Convex and Nonconvex Optimization Are Both Minimax-Optimal for Noisy Blind Deconvolution Under Random Designs
凸优化和非凸优化对于随机设计下的噪声盲反卷积都是极小极大最优
Softmax policy gradient methods can take exponential time to converge
Softmax 策略梯度方法可能需要指数时间才能收敛
  • DOI:
    10.1007/s10107-022-01920-6
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Li, Gen;Wei, Yuting;Chi, Yuejie;Chen, Yuxin
  • 通讯作者:
    Chen, Yuxin
Fast Global Convergence of Natural Policy Gradient Methods with Entropy Regularization
具有熵正则化的自然策略梯度方法的快速全局收敛
  • DOI:
    10.1287/opre.2021.2151
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Cen, Shicong;Cheng, Chen;Chen, Yuxin;Wei, Yuting;Chi, Yuejie
  • 通讯作者:
    Chi, Yuejie
Uncertainty Quantification for Nonconvex Tensor Completion: Confidence Intervals, Heteroscedasticity and Optimality
非凸张量完成的不确定性量化:置信区间、异方差性和最优性
  • DOI:
    10.1109/tit.2022.3205781
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Cai, Changxiao;Poor, H. Vincent;Chen, Yuxin
  • 通讯作者:
    Chen, Yuxin
Tackling Small Eigen-Gaps: Fine-Grained Eigenvector Estimation and Inference Under Heteroscedastic Noise
解决小特征间隙:异方差噪声下的细粒度特征向量估计和推理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuxin Chen其他文献

Class-wise Thresholding for Detecting Out-of-Distribution Data
用于检测分布外数据的分类阈值
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matteo Guarrera;Baihong Jin;Tung;Maria A. Zuluaga;Yuxin Chen;A. Sangiovanni
  • 通讯作者:
    A. Sangiovanni
Secret Image Sharing Based on Error-Correcting Codes
基于纠错码的秘密图像共享
Research on the effect and mechanism of antimicrobial peptides HPRP‐A1/A2 work against Toxoplasma gondii infection
抗菌肽HPRP-A1/A2抗弓形虫感染作用及机制研究
  • DOI:
    10.1111/pim.12619
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ran Liu;Yangyue Ni;Jingwei Song;Zhipeng Xu;J. Qiu;Lijuan Wang;Yuxiao Zhu;Yibing Huang;M. Ji;Yuxin Chen
  • 通讯作者:
    Yuxin Chen
DNA Bloom Filter enables anti-contamination and file version control for DNA-based data storage
DNA 布隆过滤器可为基于 DNA 的数据存储提供抗污染和文件版本控制
  • DOI:
    10.1093/bib/bbae125
  • 发表时间:
    2024-03-27
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Yiming Li;Haoling Zhang;Yuxin Chen;Yue Shen;Zhi Ping
  • 通讯作者:
    Zhi Ping
Machine learning models to predict the tunnel wall convergence
预测隧道壁收敛的机器学习模型
  • DOI:
    10.1016/j.trgeo.2023.101022
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Jian Zhou;Yuxin Chen;Chuanqi Li;Y. Qiu;Shuai Huang;Mingli Tao
  • 通讯作者:
    Mingli Tao

Yuxin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuxin Chen', 18)}}的其他基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2221009
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2100158
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2106739
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2014279
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CIF: Small: Taming Nonconvexity in High-Dimensional Statistical Estimation
CIF:小:驯服高维统计估计中的非凸性
  • 批准号:
    1907661
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    1900140
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似国自然基金

计及通信时滞和控制器参数不确定性的大规模电力系统小干扰稳定域研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
面向不确定性多源异构数据融合分类方法的小微企业信用评级研究
  • 批准号:
    71901044
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
农业小流域面源氮负荷与源汇变异的定量化及其不确定性
  • 批准号:
    51779245
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
基于小波-卡尔曼滤波的二维离散随机系统鲁棒H∞控制
  • 批准号:
    61603034
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于多源信息融合的小流域山洪灾害风险可变模糊定量评价研究
  • 批准号:
    51509007
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2100158
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Expressive Reasoning and Learning about Actions under Uncertainty via Probabilistic Extension of Action Language
RI:小:通过动作语言的概率扩展来表达推理和学习不确定性下的动作
  • 批准号:
    1815337
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Speedup Learning for Online Planning Under Uncertainty
RI:小:加速不确定性下在线规划的学习
  • 批准号:
    1619433
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Knowledge Representation and Reasoning under Uncertainty with Probabilistic Answer Set Programming
RI:小:不确定性下的知识表示和推理与概率答案集编程
  • 批准号:
    1526301
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI: Small: Uncertainty-driven Dynamic 3D Reconstruction
RI:小:不确定性驱动的动态 3D 重建
  • 批准号:
    1217797
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了