RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections

RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正

基本信息

  • 批准号:
    1900140
  • 负责人:
  • 金额:
    $ 38.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

This research aims to address the pressing challenges on learning and inference from large-dimensional data. Contemporary sensing and data acquisition technologies produce data at an unprecedented rate. A ubiquitous challenge in modern data applications is thus to efficiently and reliably extract relevant information and associated insights from a deluge of data. In the meantime, this challenge is exacerbated by the unprecedented growth of relevant features one needs to reason about, which oftentimes even outpaces the growth of data samples. Classical statistical inference paradigms, which either only work in the presence of an enormous number of data samples, or ignore the computational cost of the estimators at all, become highly insufficient, or even unreliable, for many emerging applications of machine learning and big-data analytics. To address the above pressing issues in high dimensions, novel theoretical tools need to be brought in the picture in order to provide a comprehensive understanding of the performance limits of various algorithms and tasks. The goal of this project is four-fold: First, to develop a modern theory to characterize precise performance of classical statistical algorithms in high dimensions. Second, to suggest proper corrections of classical statistical inference procedures to accommodate the sample-starved regime. Third, to develop computationally efficient algorithms that can provably attain the fundamental statistical limits, if possible. Finally, forth, to identify potential computational barriers if the fundamental statistical limits cannot be met. The transformative potential of the proposed research program is in the development of foundational statistical data analytics theory through a novel combination of statistics, approximation theory, statistical physics, mathematical optimization, and information theory, offering scalable statistical inference and learning algorithms. The theory and algorithms developed within this project will have direct impact on various engineering and science applications such as large-scale machine learning, DNA sequencing, genetic disease analysis, and natural language processing. This collaborative program provides cross-university opportunities for students training, and we are committed to engaging and helping underrepresented and women students in STEM through long-term mentorships and outreach activities.This research aims to address the pressing challenges on learning and inference from large-dimensional data. Contemporary sensing and data acquisition technologies produce data at an unprecedented rate. A ubiquitous challenge in modern data applications is thus to efficiently and reliably extract relevant information and associated insights from a deluge of data. In the meantime, this challenge is exacerbated by the unprecedented growth of relevant features one needs to reason about, which oftentimes even outpaces the growth of data samples. Classical statistical inference paradigms, which either only work in the presence of an enormous number of data samples, or ignore the computational cost of the estimators at all, become highly insufficient, or even unreliable, for many emerging applications of machine learning and big-data analytics. To address the above pressing issues in high dimensions, novel theoretical tools need to be brought in the picture in order to provide a comprehensive understanding of the performance limits of various algorithms and tasks. The goal of this project is four-fold: First, to develop a modern theory to characterize precise performance of classical statistical algorithms in high dimensions. Second, to suggest proper corrections of classical statistical inference procedures to accommodate the sample-starved regime. Third, to develop computationally efficient algorithms that can provably attain the fundamental statistical limits, if possible. Finally, forth, to identify potential computational barriers if the fundamental statistical limits cannot be met. The transformative potential of the proposed research program is in the development of foundational statistical data analytics theory through a novel combination of statistics, approximation theory, statistical physics, mathematical optimization, and information theory, offering scalable statistical inference and learning algorithms. The theory and algorithms developed within this project will have direct impact on various engineering and science applications such as large-scale machine learning, DNA sequencing, genetic disease analysis, and natural language processing. This collaborative program provides cross-university opportunities for students training, and we are committed to engaging and helping underrepresented and women students in STEM through long-term mentorships and outreach activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究旨在解决大维数据学习和推理的紧迫挑战。当代传感和数据采集技术以前所未有的速度产生数据。因此,现代数据应用中普遍存在的挑战是从海量数据中高效、可靠地提取相关信息和相关见解。与此同时,需要推理的相关特征的空前增长加剧了这一挑战,这种增长常常甚至超过了数据样本的增长。经典的统计推理范式要么仅在存在大量数据样本的情况下起作用,要么根本忽略估计器的计算成本,对于机器学习和大数据的许多新兴应用来说变得非常不足,甚至不可靠分析。为了解决高维度的上述紧迫问题,需要引入新颖的理论工具,以便全面了解各种算法和任务的性能限制。该项目的目标有四个:首先,开发一种现代理论来表征高维经典统计算法的精确性能。其次,建议对经典统计推断程序进行适当的修正,以适应样本匮乏的情况。第三,如果可能的话,开发能够证明达到基本统计极限的计算高效的算法。最后,如果无法满足基本统计限制,则确定潜在的计算障碍。拟议研究计划的变革潜力在于通过统计学、近似理论、统计物理学、数学优化和信息论的新颖组合来发展基础统计数据分析理论,提供可扩展的统计推理和学习算法。 该项目开发的理论和算法将对各种工程和科学应用产生直接影响,例如大规模机器学习、DNA测序、遗传疾病分析和自然语言处理。该合作项目为学生培训提供了跨大学的机会,我们致力于通过长期指导和推广活动吸引和帮助 STEM 领域中代表性不足的女学生。这项研究旨在解决大规模学习和推理方面的紧迫挑战。维度数据。当代传感和数据采集技术以前所未有的速度产生数据。因此,现代数据应用中普遍存在的挑战是从海量数据中高效、可靠地提取相关信息和相关见解。与此同时,需要推理的相关特征的空前增长加剧了这一挑战,这种增长常常甚至超过了数据样本的增长。经典的统计推理范式要么仅在存在大量数据样本的情况下起作用,要么根本忽略估计器的计算成本,对于机器学习和大数据的许多新兴应用来说变得非常不足,甚至不可靠分析。为了解决高维度的上述紧迫问题,需要引入新颖的理论工具,以便全面了解各种算法和任务的性能限制。该项目的目标有四个:首先,开发一种现代理论来表征高维经典统计算法的精确性能。其次,建议对经典统计推断程序进行适当的修正,以适应样本匮乏的情况。第三,如果可能的话,开发能够证明达到基本统计极限的计算高效的算法。最后,如果无法满足基本统计限制,则确定潜在的计算障碍。拟议研究计划的变革潜力在于通过统计学、近似理论、统计物理学、数学优化和信息论的新颖组合来发展基础统计数据分析理论,提供可扩展的统计推理和学习算法。 该项目开发的理论和算法将对各种工程和科学应用产生直接影响,例如大规模机器学习、DNA测序、遗传疾病分析和自然语言处理。该合作项目为学生培训提供跨大学的机会,我们致力于通过长期的指导和推广活动吸引和帮助 STEM 领域中代表性不足的女学生。该奖项反映了 NSF 的法定使命,并通过评估认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Communication-Efficient Distributed Optimization in Networks with Gradient Tracking and Variance Reduction
具有梯度跟踪和方差减少的网络中通信高效的分布式优化
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization
噪声矩阵完成:了解通过非凸优化实现凸松弛的统计保证
Inference and uncertainty quantification for noisy matrix completion
Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices
不对称有助于:非对称扰动低秩矩阵的特征值和特征向量分析
  • DOI:
    10.1214/20-aos1963
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Y;Cheng C;Fan J
  • 通讯作者:
    Fan J
Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction
异步 Q-Learning 的样本复杂性:更清晰的分析和方差减少
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuxin Chen其他文献

3D Printed Stretchable Coaxial Fiber Grid for Dual-mode Multifunctional Tactile Sensor Array
用于双模多功能触觉传感器阵列的 3D 打印可拉伸同轴光纤网格
  • DOI:
    10.1016/j.nanoen.2024.109895
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Yuxin Chen;Xinping Lin;Zewen Lin;Jinmeng Zhang;Jialiang Li;Hao Xue;Hua Bai
  • 通讯作者:
    Hua Bai
Consumer Search with Price Sorting ∗
通过价格排序进行消费者搜索*
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jun Yu;Yuxin Chen
  • 通讯作者:
    Yuxin Chen
Enabling Mammography with Co-Robotic Ultrasound
通过协作机器人超声实现乳房 X 光检查
  • DOI:
    10.48550/arxiv.2312.10309
  • 发表时间:
    2023-12-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxin Chen;Yifan Yin;Julian Brown;Kevin Wang;Yi Wang;Ziyi Wang;Russell H. Taylor;Yixuan Wu;Emad M. Boctor
  • 通讯作者:
    Emad M. Boctor
Pathologic Assessment of Pancreatic Fibrosis in Predicting Pancreatic Fistula and Management of Prophylactic Drain Removal After Pancreaticoduodenectomy
胰腺纤维化的病理评估预测胰瘘和胰十二指肠切除术后预防性引流管的管理
  • DOI:
    10.1007/s00268-015-3301-4
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xiaofei Lu;Yuxin Chen
  • 通讯作者:
    Yuxin Chen
Bioinformatics analysis of the potential mechanisms of Alzheimer’s disease induced by exposure to combined triazine herbicides
联合三嗪除草剂暴露诱发阿尔茨海默病潜在机制的生物信息学分析
  • DOI:
    10.1080/03014460.2023.2259242
  • 发表时间:
    2023-01-02
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Jianan Li;Ling Qi;Yuxin Chen;Haoming Lv;H. Bi
  • 通讯作者:
    H. Bi

Yuxin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuxin Chen', 18)}}的其他基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2218773
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2221009
  • 财政年份:
    2022
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2100158
  • 财政年份:
    2021
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2106739
  • 财政年份:
    2021
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2014279
  • 财政年份:
    2020
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
CIF: Small: Taming Nonconvexity in High-Dimensional Statistical Estimation
CIF:小:驯服高维统计估计中的非凸性
  • 批准号:
    1907661
  • 财政年份:
    2019
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
  • 批准号:
    12365008
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RI: Medium: RUI: Automated Decision Making for Open Multiagent Systems
协作研究:RI:中:RUI:开放多智能体系统的自动决策
  • 批准号:
    2312657
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Multilingual Long-form QA with Retrieval-Augmented Language Models
合作研究:RI:Medium:采用检索增强语言模型的多语言长格式 QA
  • 批准号:
    2312948
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312956
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313136
  • 财政年份:
    2023
  • 资助金额:
    $ 38.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了