Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality

协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性

基本信息

  • 批准号:
    2014279
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Emerging data science applications require efficient extraction of actionable insights from large and messy datasets. The number of relevant features often overwhelms the volume of data that is available, which dramatically complicates the statistical inference tasks and subsequent decision making. In the existing statistical literature, most of theory aims at understanding the average or global behavior of a statistical estimator in high dimensions. In many applications, however, it is often the case that the goal is not to explore the global behavior of a parameter estimator, but rather to perform inference and reasoning on its local, yet important, operational properties. The techniques and methods developed in the project will further advance the interplay between a broad range of areas including high-dimensional statistics, harmonic analysis, statistical physics, optimization, complex analysis, and statistical machine learning. The project provides research training opportunities for graduate students.This project pursues fine-grained inferential procedures and theory, aimed at enlarging the uncertainty assessment toolbox for various low-complexity models in high dimensions. Focusing on a few stylized problems, this research program consists of four major thrusts: (1) construct optimal confidence intervals for linear functionals of eigenvectors in low-rank matrix estimation; (2) design fine-grained hypothesis testing procedures for sparse regression under general designs; (3) develop entry-wise inference schemes for principal component analysis with missing data; and (4) conduct reliable and adaptive statistical eigen-analysis under minimal eigen-gaps. Emphasis is placed on algorithms that are model-agnostic and fully adaptive to data heteroscedasticity. Addressing these issues calls for the development of new statistical theory that enables reliable inference for a broad class of local properties underlying the unknown parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的数据科学应用需要从庞大而混乱的数据集中有效提取可操作的见解。相关特征的数量通常会超过可用数据量,这使得统计推断任务和后续决策变得非常复杂。在现有的统计文献中,大多数理论旨在理解高维统计估计量的平均或全局行为。然而,在许多应用中,通常的情况是,目标不是探索参数估计器的全局行为,而是对其局部但重要的操作属性进行推理和推理。 该项目开发的技术和方法将进一步促进高维统计、调和分析、统计物理、优化、复杂分析和统计机器学习等广泛领域之间的相互作用。该项目为研究生提供研究培训机会。该项目追求细粒度的推理程序和理论,旨在扩大高维各种低复杂度模型的不确定性评估工具箱。该研究项目重点关注一些典型问题,包括四个主要方向:(1)构建低秩矩阵估计中特征向量线性函数的最佳置信区间; (2) 为一般设计下的稀疏回归设计细粒度的假设检验程序; (3) 开发用于缺失数据的主成分分析的逐项推理方案; (4) 在最小特征间隙下进行可靠且自适应的统计特征分析。重点放在与模型无关且完全适应数据异方差性的算法上。解决这些问题需要开发新的统计理论,从而能够对未知参数下的广泛局部属性进行可靠的推断。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
非凸张量完成的不确定性量化:置信区间、异方差和最优性
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization
噪声矩阵完成:了解通过非凸优化实现凸松弛的统计保证
  • DOI:
    10.1137/19m1290000
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Chen, Yuxin;Chi, Yuejie;Fan, Jianqing;Ma, Cong;Yan, Yuling
  • 通讯作者:
    Yan, Yuling
Uncertainty Quantification for Nonconvex Tensor Completion: Confidence Intervals, Heteroscedasticity and Optimality
非凸张量完成的不确定性量化:置信区间、异方差性和最优性
  • DOI:
    10.1109/tit.2022.3205781
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Cai, Changxiao;Poor, H. Vincent;Chen, Yuxin
  • 通讯作者:
    Chen, Yuxin
Tackling Small Eigen-Gaps: Fine-Grained Eigenvector Estimation and Inference Under Heteroscedastic Noise
解决小特征间隙:异方差噪声下的细粒度特征向量估计和推理
Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices
不对称有助于:非对称扰动低秩矩阵的特征值和特征向量分析
  • DOI:
    10.1214/20-aos1963
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen, Yuxin;Cheng, Chen;Fan, Jianqing
  • 通讯作者:
    Fan, Jianqing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuxin Chen其他文献

Class-wise Thresholding for Detecting Out-of-Distribution Data
用于检测分布外数据的分类阈值
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matteo Guarrera;Baihong Jin;Tung;Maria A. Zuluaga;Yuxin Chen;A. Sangiovanni
  • 通讯作者:
    A. Sangiovanni
Secret Image Sharing Based on Error-Correcting Codes
基于纠错码的秘密图像共享
Research on the effect and mechanism of antimicrobial peptides HPRP‐A1/A2 work against Toxoplasma gondii infection
抗菌肽HPRP-A1/A2抗弓形虫感染作用及机制研究
  • DOI:
    10.1111/pim.12619
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ran Liu;Yangyue Ni;Jingwei Song;Zhipeng Xu;J. Qiu;Lijuan Wang;Yuxiao Zhu;Yibing Huang;M. Ji;Yuxin Chen
  • 通讯作者:
    Yuxin Chen
DNA Bloom Filter enables anti-contamination and file version control for DNA-based data storage
DNA 布隆过滤器可为基于 DNA 的数据存储提供抗污染和文件版本控制
  • DOI:
    10.1093/bib/bbae125
  • 发表时间:
    2024-03-27
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Yiming Li;Haoling Zhang;Yuxin Chen;Yue Shen;Zhi Ping
  • 通讯作者:
    Zhi Ping
Machine learning models to predict the tunnel wall convergence
预测隧道壁收敛的机器学习模型
  • DOI:
    10.1016/j.trgeo.2023.101022
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Jian Zhou;Yuxin Chen;Chuanqi Li;Y. Qiu;Shuai Huang;Mingli Tao
  • 通讯作者:
    Mingli Tao

Yuxin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuxin Chen', 18)}}的其他基金

Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2218773
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    2218713
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2221009
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
RI: Small: Uncertainty Quantification for Nonconvex Low-Complexity Models
RI:小:非凸低复杂度模型的不确定性量化
  • 批准号:
    2100158
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2106739
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CIF: Small: Taming Nonconvexity in High-Dimensional Statistical Estimation
CIF:小:驯服高维统计估计中的非凸性
  • 批准号:
    1907661
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research:Algorithmic High-Dimensional Statistics: Optimality, Computtional Barriers, and High-Dimensional Corrections
RI:中:协作研究:算法高维统计:最优性、计算障碍和高维校正
  • 批准号:
    1900140
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311875
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311876
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311877
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了