RI: Small: Expressive Reasoning and Learning about Actions under Uncertainty via Probabilistic Extension of Action Language

RI:小:通过动作语言的概率扩展来表达推理和学习不确定性下的动作

基本信息

  • 批准号:
    1815337
  • 负责人:
  • 金额:
    $ 36.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Automated reasoning about dynamic worlds is an important capability for robust intelligent systems. Action languages allow for the description of actions and their effects in dynamic domains in a way that is based on natural language but sufficiently formal for modeling in knowledge-based systems. Today's action languages do not easily allow such systems to account for the probability and uncertainty necessary to model human-like commonsense reasoning. Existing action languages also assume full specification of a system in advance of one-shot execution of the logic program, which does not easily operate with continuous streams of data. This project will develop an action language based on the mathematical foundation that combines logic and probability. The research will join the representation and reasoning advantages of logical AI to the advantages in statistical AI to compute and learn quantitative specifications from data. The new action language will jointly address commonsense reasoning and learning about actions in uncertain dynamic domains. Such a system allows us to scrutinize and understand the system behavior, which is vital to the design of systems that are explainable and interpretable.The project is to design and implement a novel action language that is highly expressive for modeling various aspects of dynamic systems under uncertainty and which applies to knowledge-rich diagnosis and stream reasoning. The formalism will be built upon a recent probabilistic extension of answer set programs, called LPMLN, which incorporates the weight scheme of Markov Logic into the language of answer set programming. The formalism will enable probabilistic diagnostic reasoning and counterfactual reasoning about dynamic domains. Inference and learning methods for the probabilistic action language will be derived from the methods in logic programming and statistical relational learning. The framework will be further extended to integrate reasoning over observations given as streams of data. The methods produced will be useful for several applications that require integration of knowledge representation and other areas, such as robotics and autonomous systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
关于动态世界的自动推理是强大智能系统的一项重要功能。 动作语言允许以基于自然语言但足够正式的方式描述动态领域中的动作及其效果,以便在基于知识的系统中进行建模。当今的动作语言不容易让此类系统解释模拟人类常识推理所需的概率和不确定性。 现有的动作语言还在逻辑程序的一次性执行之前假设了系统的完整规范,这不容易与连续的数据流一起操作。 该项目将开发一种基于结合逻辑和概率的数学基础的动作语言。 该研究将把逻辑人工智能的表示和推理优势与统计人工智能的优势结合起来,从数据中计算和学习定量规范。新的动作语言将共同解决常识推理和学习不确定动态领域中的动作的问题。 这样的系统使我们能够仔细检查和理解系统行为,这对于设计可解释和可解释的系统至关重要。该项目旨在设计和实现一种新颖的动作语言,该语言具有很强的表现力,可以对动态系统的各个方面进行建模不确定性,适用于知识丰富的诊断和流推理。形式主义将建立在答案集程序的最新概率扩展之上,称为 LPMLN,它将马尔可夫逻辑的权重方案合并到答案集编程语言中。形式主义将使关于动态域的概率诊断推理和反事实推理成为可能。概率动作语言的推理和学习方法将源自逻辑编程和统计关系学习的方法。该框架将进一步扩展,以整合对作为数据流给出的观察结果的推理。所产生的方法对于需要整合知识表示和其他领域的多种应用非常有用,例如机器人和自主系统。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elaboration Tolerant Representation of Markov Decision Process via Decision Theoretic Extension of Action Language pBC+
通过动作语言 pBC 的决策理论扩展对马尔可夫决策过程进行精细化容忍表示
  • DOI:
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Yi;Lee, Joohyung
  • 通讯作者:
    Lee, Joohyung
Computing Logic Programs with Ordered Disjunction Using asprin
使用阿司匹林通过有序析取计算逻辑程序
A Simple Extension of Answer Set Programs to Embrace Neural Networks (Extended Abstract)
答案集程序的简单扩展以支持神经网络(扩展摘要)
First-order stable model semantics with intensional functions
具有内涵函数的一阶稳定模型语义
  • DOI:
    10.1016/j.artint.2019.01.001
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Bartholomew;Joohyung Lee
  • 通讯作者:
    Joohyung Lee
A Model-Based Approach to Visual Reasoning on CNLVR Dataset
CNLVR 数据集上基于模型的视觉推理方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joohyung Lee其他文献

Frequency comb measurements for 6G terahertz nano/microphotonics and metamaterials
6G 太赫兹纳米/微光子学和超材料的频率梳测量
  • DOI:
    10.1515/nanoph-2023-0869
  • 发表时间:
    2024-01-31
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Guseon Kang;Younggeun Lee;Jaeyoon Kim;Dongwook Yang;Han;Shinhyung Kim;Soojeong Baek;Hyosang Yoon;Joohyung Lee;Teun;Young‐Jin Kim
  • 通讯作者:
    Young‐Jin Kim
Facile deposition of environmentally benign organic-inorganic flame retardant coatings to protect flammable foam
轻松沉积环境友好的有机-无机阻燃涂层以保护易燃泡沫
  • DOI:
    10.1016/j.porgcoat.2021.106480
  • 发表时间:
    2021-12-01
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    T. G. Weldemhret;H. Menge;Dong;Hyun;Joohyung Lee;Jung‐il Song;Y. Park
  • 通讯作者:
    Y. Park
Performance evaluation of a DTN as a city-wide infrastructure network
DTN 作为全市基础设施网络的性能评估
  • DOI:
    10.1145/1555697.1555717
  • 发表时间:
    2009-06-17
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joohyung Lee;Kyunghan Lee;Jaesung Jung;S. Chong
  • 通讯作者:
    S. Chong
100 nm scale low-noise sensors based on aligned carbon nanotube networks: overcoming the fundamental limitation of network-based sensors
基于对齐碳纳米管网络的100纳米级低噪声传感器:克服基于网络的传感器的根本限制
  • DOI:
    10.1088/0957-4484/21/5/055504
  • 发表时间:
    2010-02-05
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Minbaek Lee;Joohyung Lee;T. H. Kim;Hyungwoo Lee;B. Lee;June;Y. Jhon;M. Seong;Seunghun Hong
  • 通讯作者:
    Seunghun Hong
Pricing for Past Channel State Information in Multi-Channel Cognitive Radio Networks
多信道认知无线电网络中过去信道状态信息的定价
  • DOI:
    10.1109/tmc.2017.2740931
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Sunjung Kang;Changhee Joo;Joohyung Lee;N. Shroff
  • 通讯作者:
    N. Shroff

Joohyung Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joohyung Lee', 18)}}的其他基金

RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
  • 批准号:
    2006747
  • 财政年份:
    2020
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
Student Travel Grant for 2018 Principles of Knowledge Representation and Reasoning Conference and Doctoral Consortium
2018年知识表示与推理原理会议及博士联盟学生旅费补助
  • 批准号:
    1838259
  • 财政年份:
    2018
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
RI: Small: Knowledge Representation and Reasoning under Uncertainty with Probabilistic Answer Set Programming
RI:小:不确定性下的知识表示和推理与概率答案集编程
  • 批准号:
    1526301
  • 财政年份:
    2015
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
RI: Small: Answer Set Programming Modulo Theories
RI:小:答案集编程模理论
  • 批准号:
    1319794
  • 财政年份:
    2013
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
RI: Small: Enhancing Nonmonotonic Declarative Knowledge Representation and Reasoning by Merging Answer Set Programming with Other Computing Paradigms
RI:小:通过将答案集编程与其他计算范式合并来增强非单调声明性知识表示和推理
  • 批准号:
    0916116
  • 财政年份:
    2009
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
SGER: Grounding-Independent Reasoning in Answer Set Programming
SGER:答案集编程中与基础无关的推理
  • 批准号:
    0839821
  • 财政年份:
    2008
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant

相似国自然基金

ALKBH5介导的SOCS3-m6A去甲基化修饰在颅脑损伤后小胶质细胞炎性激活中的调控作用及机制研究
  • 批准号:
    82301557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
miRNA前体小肽miPEP在葡萄低温胁迫抗性中的功能研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
PKM2苏木化修饰调节非小细胞肺癌起始细胞介导的耐药生态位的机制研究
  • 批准号:
    82372852
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CLDN6高表达肿瘤细胞亚群在非小细胞肺癌ICB治疗抗性形成中的作用及机制研究
  • 批准号:
    82373364
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

SHF:Small: Enabling Scalable and Expressive Program Analysis Notifications
SHF:Small:启用可扩展且富有表现力的程序分析通知
  • 批准号:
    1714538
  • 财政年份:
    2017
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
SHF: Small: Generalizing Monotonic Data Structures for Expressive, Deterministic Parallel Programming
SHF:小:泛化单调数据结构以实现富有表现力、确定性的并行编程
  • 批准号:
    1218375
  • 财政年份:
    2012
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
SHF: Small: Expressive and Scalable Notifications for Program Analysis Tools
SHF:小:程序分析工具的富有表现力和可扩展的通知
  • 批准号:
    1217700
  • 财政年份:
    2012
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
Development of a curriculum on expressive education in a training course for nursery and school teachers from the perspective of the transition from nurseries/kindergartens to elementary schools.
从托儿所/幼儿园到小学过渡的角度,开发幼儿园和学校教师培训课程中的表达教育课程。
  • 批准号:
    23531270
  • 财政年份:
    2011
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
III-COR-Small: Towards More Flexible, Expressive and Robust Stream Systems
III-COR-Small:迈向更灵活、更具表现力和稳健的流系统
  • 批准号:
    0917349
  • 财政年份:
    2009
  • 资助金额:
    $ 36.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了