AI-Assisted Algorithms for Automatic AC Power Flow Model Creation based on DC Dispatch
基于直流调度的人工智能辅助自动交流潮流模型创建算法
基本信息
- 批准号:2243204
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF project aims to develop user-friendly algorithms that automatically create realistic snapshots of real U.S. electric grids for many futuristic operating scenarios with variable proportions of conventional and renewable energy generators. This project will bring transformative change to the process of risk identification and mitigation of electric grids by significantly reducing model development time and increasing the operating conditions that can be considered. The intellectual merits of the project include: 1) deployment of a multi-stage approach that combines physics-based principles and artificial intelligence-based methods to convert dispatch scenarios of grid generators to full power system cases, 2) development of a data-driven problem discovery algorithm to assist human intervention. The broader impacts of the project include: a) facilitation of high-renewable energy power grids towards the achievement of national clean energy goals, b) involvement of undergraduate and graduate students from underrepresented groups, c) provision of opportunities, including lab tours and presentations, for K-12 students to learn about the potential use of artificial intelligence in real power grids.Higher penetration of renewable energy resources has led to increased variations in daily generation mix, thus, the AC power flow (ACPF) solution of a DC power flow (DCPF) dispatch case is no longer a good initialization to obtain the ACPF solution of the next operating condition. Currently, there are neither reliable algorithms nor vendor products to automatically convert DCPF dispatch cases to converged ACPF cases, thus, conversion requires manual analysis and tuning. This project aims to solve this problem using several innovations: 1) a physics-guided machine learning initializer (PMLI) to replace flat start initialization in Newton Raphson solution method for ACPF, 2) a transfer learning process to reuse developed PMLI on multiple power systems, and 3) a hot-start incremental algorithm with automatic reactive power compensation selection. This work will provide an important step to make simulation of the power grid functions in real time a reality.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 NSF 项目旨在开发用户友好的算法,自动创建真实美国电网的真实快照,适用于传统和可再生能源发电机比例可变的许多未来操作场景。该项目将通过显着缩短模型开发时间并增加可考虑的运行条件,为电网风险识别和缓解过程带来革命性的变化。该项目的智力优势包括:1)部署多阶段方法,结合基于物理的原理和基于人工智能的方法,将电网发电机的调度场景转换为完整的电力系统案例,2)开发数据驱动的协助人类干预的问题发现算法。该项目的更广泛影响包括:a)促进高可再生能源电网实现国家清洁能源目标,b)来自代表性不足群体的本科生和研究生的参与,c)提供机会,包括实验室参观和演示,让 K-12 学生了解人工智能在实际电网中的潜在应用。可再生能源的更高渗透率导致日常发电组合的变化增加,因此,直流电源的交流功率流 (ACPF) 解决方案流动(DCPF)调度情况不再是获得下一个操作条件的ACPF解的良好初始化。目前还没有可靠的算法和厂商产品可以将DCPF调度案例自动转换为融合ACPF案例,因此转换需要人工分析和调优。该项目旨在通过多项创新来解决这个问题:1) 物理引导机器学习初始化器 (PMLI) 取代 ACPF 牛顿拉夫森求解方法中的平启动初始化,2) 迁移学习过程,以在多个电力系统上重用开发的 PMLI ,以及3)具有自动无功功率补偿选择的热启动增量算法。这项工作将为实现电网功能的实时模拟迈出重要一步。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Machine Learning Initializer for Newton-Raphson AC Power Flow Convergence
牛顿-拉夫森交流潮流收敛的机器学习初始化器
- DOI:10.1109/tpec60005.2024.10472261
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Okhuegbe, Samuel N;Ademola, Adedasola A;Liu, Yilu
- 通讯作者:Liu, Yilu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yilu Liu其他文献
Internet based frequency monitoring network (FNET)
基于互联网的频率监测网络(FNET)
- DOI:
10.1109/pesw.2001.917238 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
B. Qiu;Ling Chen;Virgilio A. Centeno;Xuzhu Dong;Yilu Liu - 通讯作者:
Yilu Liu
Utilization of optical sensors for phasor measurement units
使用光学传感器作为相量测量单元
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wenxuan Yao;D. N. Wells;D. King;A. Herron;T. King;Yilu Liu - 通讯作者:
Yilu Liu
Smart transmission and wide-area monitoring system
智能传输及广域监控系统
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Y. Liu;Shutang You;Yilu Liu - 通讯作者:
Yilu Liu
Appropriate Evaluation of Primary Frequency Response and Its Applications
一次频率响应的正确评估及其应用
- DOI:
10.1109/gtd49768.2023.00049 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chengwen Zhang;Hongyu Li;Zhihao Jiang;Weikang Wang;Chujie Zeng;Chang Chen;H. Yin;Yilu Liu;Mark Baldwin - 通讯作者:
Mark Baldwin
Electrical field based wireless devices for contactless power gird phasor measurement
用于非接触式电网相量测量的基于电场的无线设备
- DOI:
10.1109/pesgm.2014.6938903 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Y. C. Zhang;Wenxuan Yao;Jerel Culliss;Guorui Zhang;Zhaosheng Teng;Yilu Liu - 通讯作者:
Yilu Liu
Yilu Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yilu Liu', 18)}}的其他基金
PFI-RP: Increasing the stability of large-scale electric power systems through an adaptive measurement-driven controller prototype.
PFI-RP:通过自适应测量驱动控制器原型提高大型电力系统的稳定性。
- 批准号:
1941101 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRI: Development of Pulsar-based Power Grid Timing Instrumentation and Technology
MRI:基于脉冲星的电网授时仪器和技术的发展
- 批准号:
1920025 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CPS: Small: Data-driven Real-time Data Authentication in Wide-Area Energy Infrastructure Sensor Networks
CPS:小型:广域能源基础设施传感器网络中数据驱动的实时数据身份验证
- 批准号:
1931975 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EAGER: Real-Time: Intelligent Mitigation of Low-Frequency Oscillations in Smart Grid Using Real-time Learning
EAGER:实时:利用实时学习智能缓解智能电网中的低频振荡
- 批准号:
1839684 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Using Measurement-based Approach to Model, Predict and Control Large-scale Power Grids
使用基于测量的方法对大型电网进行建模、预测和控制
- 批准号:
1509624 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Multiple FACTS Devices Coordination Using Synchronized Wide Area Measurements (Collaborative Proposal with UMR)
使用同步广域测量协调多个 FACTS 设备(与 UMR 的合作提案)
- 批准号:
0701744 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Study of Global Power System Dynamic Behavior Based on Wide-Area Frequency Measurements
基于广域频率测量的全球电力系统动态行为研究
- 批准号:
0523315 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRI: Development of Integrative Instrumentation for A Nation-Wide Power System Frequency Dynamics Monitoring Network
MRI:全国电力系统频率动态监测网络综合仪器的开发
- 批准号:
0215731 - 财政年份:2002
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Integration of Energy Storage Systems and Modern Flexible AC Transmission Devices
储能系统与现代柔性交流输电装置的集成
- 批准号:
9988868 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
GOALI-Technologies Joint Research Project
GOALI-Technologies联合研究项目
- 批准号:
9801139 - 财政年份:1998
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
医疗废水中的苯扎氯铵协助压电多位点电穿孔杀菌与其同步降解机制
- 批准号:22306026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新城疫病毒胁迫自噬体协助外泌体释放促进病毒扩散性感染的机制研究
- 批准号:32302842
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血清分子伴侣协助的二氧化硅界面DNA杂交方法研究及其在原位在线检测中的应用
- 批准号:22374104
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
根系分泌物在根际微生物协助黄瓜耐盐中的作用机制
- 批准号:32360790
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
根系微生物与宿主互作协助黄瓜抵御南方根结线虫胁迫的机制
- 批准号:32372791
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
AI-empowered 3D Computer Vision and Image-Omics Integration for Digital Kidney Histopathology
AI 赋能的 3D 计算机视觉和图像组学集成用于数字肾脏组织病理学
- 批准号:
10635439 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Achieve Fairness in AI-Assisted Mobile Healthcare Apps through Unsupervised Federated Learning
通过无监督联合学习实现人工智能辅助移动医疗应用程序的公平性
- 批准号:
10504193 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Achieve Fairness in AI-Assisted Mobile Healthcare Apps through Unsupervised Federated Learning
通过无监督联合学习实现人工智能辅助移动医疗应用程序的公平性
- 批准号:
10678999 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别: