AI-Powered Biased Ligand Design
人工智能驱动的偏向配体设计
基本信息
- 批准号:10637910
- 负责人:
- 金额:$ 31.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdverse effectsAffinityAgonistAlgorithmsArtificial IntelligenceBindingBiological AssayCNR1 geneCNR2 geneCalibrationChemical StructureChemicalsCoinComputational algorithmComputer AssistedComputersComputing MethodologiesDatabasesDockingDrug DesignDrug ModelingsDrug TargetingEvaluationFutureGenerationsGoalsGrantInternetLearningLibrariesLigandsMeasuresMethodsModelingModernizationModificationMolecularOutcomePathway interactionsPatternPharmaceutical PreparationsPlayProtocols documentationPublic DomainsReportingResearchResourcesRoleSeriesSignal PathwaySignal TransductionSpecificitySystemTechniquesTrainingValidationantagonistapplication programming interfacecannabinoid receptorcomputational platformcomputerized toolsdesigndrug candidatedrug developmentdrug discoverydrug-like compoundgenerative adversarial networkimprovedmachine learning algorithmnetwork modelsnovelnovel therapeuticsrational designscreeningside effectstatisticssuccesstoolvirtual screeningweb appweb-based tool
项目摘要
AI-Powered Biased Ligand Design
A biased ligand which elicits a certain cellular signal but does not affect other pathways is an
attractive drug candidate as it can minimize unwanted or adverse effects. Unfortunately, very few
current computer-aided drug design methods can enable biased ligand design. Moreover, there
is an urgent need to expand the druggable chemical space for those very promising drug targets
which have plenty of potent ligands developed, but unfortunately, no approved drugs. We plan to
apply the artificial intelligence (AI) techniques to address the two challenges by developing
interaction profile scoring function models to enable biased ligand design, and Drug-GAN models
to achieve de novo chemical structure design. The central hypothesis of this application states
that the function as well as the signaling pathways elicited by a ligand is encoded in the ligand-
residue interaction profile (IP), and machine learning algorithms can learn the key attributes of
the IP and generate scoring functions, coined IPSFs, to recognize similar ligands in a screening
library. The second hypothesis of this application states that generative adversarial networks
(GAN) can learn chemical patterns from input and de novo design novel chemical structures.
Thus, the AI-powered algorithms and Drug-GAN models will be able to tackle the two challenges,
and likely revolutionize future drug discovery. Cannabinoid receptors, CB1R and CB2R, are an
ideal model target system for experimental evaluation. The proposal has four aims. In Aim 1, we
will develop IPSFs to specifically design agonists or antagonists of CB1R or CB2R, and agonists
which can activate a certain signaling pathway. Those target-specific, function-specific and
signaling pathway-specific IPSFs will enable biased ligand design. In Aim 2, we will develop Drug-
GAN models to rationally design novel chemical structures as potential agonists or antagonists of
CB1R and CB2R. In Aim 3, we will acquire top hits of screening compounds and Drug-GAN
designed compounds, and conduct binding and functional assays to validate the predictions. In
Aim 4, we will develop an expandable computational platform called PBLD to integrate the
developed IPSF models and Drug-GAN-generated druglike chemicals, and launch webtools and
APIs to conduct biased ligand design using the developed IPSF models and de novo design using
the developed Drug-GAN models. We estimate that IPSFs and Drug-GAN models can be
generated for about 300 drug targets based on a recent statistics analysis on the ChEMBL
database. PBLD has the potential to become a national resource for biased ligand design with
more and more IPSF and Drug-GAN models implemented to PBLD.
人工智能驱动的偏向配体设计
引起某种细胞信号但不影响其他途径的偏向配体是
有吸引力的候选药物,因为它可以最大限度地减少不需要或不利的影响。不幸的是,很少
当前的计算机辅助药物设计方法可以实现有偏差的配体设计。而且,还有
迫切需要扩大那些非常有前途的药物靶标的可成药化学空间
已开发出大量有效的配体,但不幸的是,尚未批准药物。我们计划
应用人工智能(AI)技术通过开发来解决这两个挑战
相互作用概况评分函数模型,以实现有偏差的配体设计和药物-GAN 模型
实现从头化学结构设计。该申请的中心假设指出
配体引发的功能和信号传导途径是在配体中编码的
残基相互作用谱(IP),机器学习算法可以学习残基的关键属性
IP 并生成评分函数(称为 IPSF),以在筛选中识别相似的配体
图书馆。该应用程序的第二个假设指出生成对抗网络
(GAN)可以从输入中学习化学模式并从头设计新颖的化学结构。
因此,人工智能驱动的算法和 Drug-GAN 模型将能够应对两个挑战:
并可能彻底改变未来的药物发现。大麻素受体 CB1R 和 CB2R 是一种
用于实验评估的理想模型目标系统。该提案有四个目标。在目标 1 中,我们
将开发IPSF来专门设计CB1R或CB2R的激动剂或拮抗剂,以及激动剂
可以激活特定的信号通路。那些特定目标、特定功能和
信号通路特异性 IPSF 将实现有偏差的配体设计。在目标 2 中,我们将开发药物-
GAN 模型合理设计新颖的化学结构作为潜在的激动剂或拮抗剂
CB1R 和 CB2R。在目标 3 中,我们将获得筛选化合物和 Drug-GAN 的热门产品
设计化合物,并进行结合和功能测定以验证预测。在
目标 4,我们将开发一个名为 PBLD 的可扩展计算平台来集成
开发了 IPSF 模型和 Drug-GAN 生成的类药化学品,并推出了网络工具和
API 使用开发的 IPSF 模型进行有偏配体设计,并使用
开发的 Drug-GAN 模型。我们估计 IPSF 和 Drug-GAN 模型可以
根据 ChEMBL 最近的统计分析生成约 300 个药物靶标
数据库。 PBLD 有潜力成为偏向配体设计的国家资源
越来越多的 IPSF 和 Drug-GAN 模型应用于 PBLD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Junmei Wang其他文献
Junmei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Junmei Wang', 18)}}的其他基金
New Generation of General AMBER Force Field for Biomedical Research
用于生物医学研究的新一代通用琥珀力场
- 批准号:
10798829 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
New Generation of General AMBER Force Field for Biomedical Research
用于生物医学研究的新一代通用琥珀力场
- 批准号:
10709551 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
New Generation of General AMBER Force Field for Biomedical Research
用于生物医学研究的新一代通用琥珀力场
- 批准号:
10503886 - 财政年份:2022
- 资助金额:
$ 31.8万 - 项目类别:
Protein Design Using Physical Scoring Functions integrated with Site Couplings
使用与位点耦合集成的物理评分函数进行蛋白质设计
- 批准号:
8320949 - 财政年份:2011
- 资助金额:
$ 31.8万 - 项目类别:
相似国自然基金
儿童药品不良反应主动监测中时序处理策略的方法学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Supplement for Role of Environmental Weathering and Gastrointestinal Digestion on the Bioavailability and Toxicity of Microplastic and Cadmium Mixtures
补充环境风化和胃肠消化对微塑料和镉混合物的生物利用度和毒性的作用
- 批准号:
10854398 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Multidomain Peptide Hydrogels as a Therapeutic Delivery Platform for Cancer Treatment
多域肽水凝胶作为癌症治疗的治疗传递平台
- 批准号:
10743144 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
CD98hc Brain Shuttles for Delivering Off-the-shelf Neuroprotective Antibodies in Alzheimer's Disease
CD98hc 脑穿梭机为阿尔茨海默病提供现成的神经保护抗体
- 批准号:
10566062 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
PAIRS: Validating telomerase reverse transcriptase (TERT) as an intrinsic vulnerability toward sensitizing cancer to radiation
配对:验证端粒酶逆转录酶 (TERT) 作为癌症对辐射敏感的内在脆弱性
- 批准号:
10718390 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别: