EAGER: Real-Time: Intelligent Mitigation of Low-Frequency Oscillations in Smart Grid Using Real-time Learning
EAGER:实时:利用实时学习智能缓解智能电网中的低频振荡
基本信息
- 批准号:1839684
- 负责人:
- 金额:$ 27.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As a critical underpinning of modern society, the electric power grid is one of the most complex and man-made dynamic systems in the world. Numerous real-time data of different types, different components, and various locations are generated to monitor and control power grids. Currently, the control of large-scale power grids is still mainly based on the physical system model, while the hidden knowledge in the abovementioned large-volume data has not been fully exploited. This project selects one typical control function in smart grids, low-frequency oscillation control, to explore the potential to enhance smart grid controls using the hidden knowledge. Low-frequency oscillation is a common phenomenon in operation of large-scale power systems. If not controlled properly, these oscillations may degrade power system security and make a large number of customers lose their power. This project aims at developing an intelligent controller to mitigate these low-frequency oscillations using data and machine learning technologies. If successful, it will advance the technology in smart grid, and remove obstacles for application of machine learning technologies in smart grid control. The proposed approach will contribute to more secure, reliable and economic operations of U.S. power grids. For example, the risk of blackout can be significantly mitigated; and thus outage cost could be saved, e.g., more than $1 billion for U.S. western grid collapse in 1996. The proposed project is also coupled with a broad dissemination of research findings and a strong educational component to engage students from underrepresented groups. The proposed research effort focuses on a completely new design methodology of intelligent oscillation damping control using the data-driven models. These data-driven models of power grids derive from synchronized measurement data using machine learning technologies, in conjunction with power grid domain knowledge. Specifically, this project will: (1) build a self-evolving dynamic knowledge base based on historical measurement data under different oscillation scenarios; (2) extract the critical features from historical and real-time data, and select the optimal features to improve data-driven model prediction accuracy; (3) develop machine learning algorithms to predict data-driven models for oscillation damping control design; and (4) validate and demonstrate the proposed methodology via computer simulations and hardware testbed experiments. This advanced approach will contribute to the energy security and efficiency of the U.S. electric power grids. This project will expose both undergraduate and graduate students to the state-of-the-art machine learning education and workforce training program. By coordinating with an established outreach program in an existing NSF/DOE engineering research center, the research results will be integrated into weekly seminars and short courses that are accessible to four partner universities, nine affiliate universities and more than 35 industry partners. Moreover, this project will encourage students to get involved with STEM (Science, Technology, Engineering and Mathematics) courses early in their pre-college years to prepare for STEM careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为现代社会的关键基础,电网是世界上最复杂,人造的动态系统之一。生成不同类型,不同组件和各种位置的许多实时数据,以监视和控制电网。当前,大规模电网的控制仍然主要基于物理系统模型,而上述大容量数据中的隐藏知识尚未完全利用。该项目在智能电网(低频振荡控制)中选择一个典型的控制功能,以探索使用隐藏知识增强智能网格控制的潜力。低频振荡是大规模动力系统运行中的常见现象。如果无法正确控制,这些振荡可能会降低电力系统安全性,并使大量客户失去电力。该项目旨在开发一个智能控制器,以使用数据和机器学习技术来减轻这些低频振荡。如果成功,它将在智能电网上推进技术,并消除在智能电网控制中应用机器学习技术的障碍。拟议的方法将有助于美国电力电网的更安全,可靠和经济的运营。例如,停电的风险可以大大减轻;因此,可以节省停电成本,例如,1996年美国西部电网崩溃的10亿美元以上。拟议的项目还与广泛的研究发现和强大的教育成分相结合,以吸引来自代表性不足的团体的学生。拟议的研究工作着重于使用数据驱动模型的智能振荡阻尼控制的全新设计方法。这些数据驱动的电网模型与电网知识结合使用机器学习技术从同步的测量数据中得出。具体而言,该项目将:(1)基于在不同振荡方案下的历史测量数据建立一个自我发展的动态知识基础; (2)从历史和实时数据中提取关键特征,并选择最佳特征以提高数据驱动的模型预测准确性; (3)开发机器学习算法,以预测数据驱动的模型用于振荡阻尼控制设计; (4)通过计算机模拟和硬件测试台实验验证和证明所提出的方法。这种先进的方法将有助于美国电力电网的能源安全和效率。该项目将使本科生和研究生均接触到最先进的机器学习教育和劳动力培训计划。通过与现有NSF/DOE工程研究中心的既定外展计划进行协调,研究结果将融入每周的研讨会和短期课程中,这些课程和简短课程可供四所合作伙伴大学,九个会员大学和35多个行业合作伙伴访问。此外,该项目将鼓励学生在学前年代初期开始参与STEM(科学,技术,工程和数学)课程,以准备为STEM职业做准备。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来通过评估来支持的。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comprehensive Method to Mitigate Forced Oscillations in Large Interconnected Power Grids
缓解大型互连电网受迫振荡的综合方法
- DOI:10.1109/access.2021.3056123
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Zhu, Lin;Yu, Wenpeng;Jiang, Zhihao;Zhang, Chengwen;Zhao, Yi;Dong, Jiaojiao;Wang, Weikang;Liu, Yilu;Farantatos, Evangelos;Ramasubramanian, Deepak
- 通讯作者:Ramasubramanian, Deepak
Dynamic Model Reduction for Large-Scale Power Systems Using Wide-Area Measurements
使用广域测量减少大型电力系统的动态模型
- DOI:10.1109/access.2020.2992624
- 发表时间:2020
- 期刊:
- 影响因子:3.9
- 作者:Tong, Ning;Jiang, Zhihao;Zhu, Lin;Liu, Yilu
- 通讯作者:Liu, Yilu
Forced Oscillation Grid Vulnerability Analysis and Mitigation Using Inverter-Based Resources: Texas Grid Case Study
- DOI:10.3390/en15082819
- 发表时间:2022-04
- 期刊:
- 影响因子:3.2
- 作者:Khaled M. Alshuaibi;Yi Zhao;Lin Zhu;E. Farantatos;D. Ramasubramanian;Wenpeng Yu;Yilu Liu
- 通讯作者:Khaled M. Alshuaibi;Yi Zhao;Lin Zhu;E. Farantatos;D. Ramasubramanian;Wenpeng Yu;Yilu Liu
Coordinated Control of Natural and Sub-Synchronous Oscillations via HVDC Links in Great Britain Power System
- DOI:10.1109/td43745.2022.9816918
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:Yi Zhao;Yuqing Dong;Lin Zhu;Kaiqi Sun;Khaled M. Alshuaibi;Chengwen Zhang;Yilu Liu;Brian Graham;E. Farantatos;B. Marshall;Md Rahman;O. Adeuyi;S. Marshall;I. Cowan
- 通讯作者:Yi Zhao;Yuqing Dong;Lin Zhu;Kaiqi Sun;Khaled M. Alshuaibi;Chengwen Zhang;Yilu Liu;Brian Graham;E. Farantatos;B. Marshall;Md Rahman;O. Adeuyi;S. Marshall;I. Cowan
Implementation and Hardware-In-the-Loop Testing of A Wide-Area Damping Controller Based on Measurement-Driven Models
基于测量驱动模型的广域阻尼控制器的实现和硬件在环测试
- DOI:10.1109/pesgm46819.2021.9638055
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Zhang, Chengwen;Zhao, Yi;Zhu, Lin;Liu, Yilu;Farantatos, Evangelos;Patel, Mahendra;Hooshyar, Hossein;Pisani, Cosimo;Zaottini, Roberto;Giannuzzi, Giorgio
- 通讯作者:Giannuzzi, Giorgio
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yilu Liu其他文献
Appropriate Evaluation of Primary Frequency Response and Its Applications
一次频率响应的正确评估及其应用
- DOI:
10.1109/gtd49768.2023.00049 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Chengwen Zhang;Hongyu Li;Zhihao Jiang;Weikang Wang;Chujie Zeng;Chang Chen;H. Yin;Yilu Liu;Mark Baldwin - 通讯作者:
Mark Baldwin
Identification of Lightning Strike on 500 kV Transmission Line Based on the Time-Domain Parameters of a Travelling Wave
基于行波时域参数的500 kV输电线路雷击识别
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.9
- 作者:
Yong Qian;Xiuche Jiang;Zhu lin;Yilu Liu - 通讯作者:
Yilu Liu
Electrical field based wireless devices for contactless power gird phasor measurement
用于非接触式电网相量测量的基于电场的无线设备
- DOI:
10.1109/pesgm.2014.6938903 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Y. C. Zhang;Wenxuan Yao;Jerel Culliss;Guorui Zhang;Zhaosheng Teng;Yilu Liu - 通讯作者:
Yilu Liu
Internet based frequency monitoring network (FNET)
基于互联网的频率监测网络(FNET)
- DOI:
10.1109/pesw.2001.917238 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
B. Qiu;Ling Chen;Virgilio A. Centeno;Xuzhu Dong;Yilu Liu - 通讯作者:
Yilu Liu
Smart transmission and wide-area monitoring system
智能传输及广域监控系统
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Y. Liu;Shutang You;Yilu Liu - 通讯作者:
Yilu Liu
Yilu Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yilu Liu', 18)}}的其他基金
AI-Assisted Algorithms for Automatic AC Power Flow Model Creation based on DC Dispatch
基于直流调度的人工智能辅助自动交流潮流模型创建算法
- 批准号:
2243204 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
PFI-RP: Increasing the stability of large-scale electric power systems through an adaptive measurement-driven controller prototype.
PFI-RP:通过自适应测量驱动控制器原型提高大型电力系统的稳定性。
- 批准号:
1941101 - 财政年份:2020
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
MRI: Development of Pulsar-based Power Grid Timing Instrumentation and Technology
MRI:基于脉冲星的电网授时仪器和技术的发展
- 批准号:
1920025 - 财政年份:2019
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
CPS: Small: Data-driven Real-time Data Authentication in Wide-Area Energy Infrastructure Sensor Networks
CPS:小型:广域能源基础设施传感器网络中数据驱动的实时数据身份验证
- 批准号:
1931975 - 财政年份:2019
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Using Measurement-based Approach to Model, Predict and Control Large-scale Power Grids
使用基于测量的方法对大型电网进行建模、预测和控制
- 批准号:
1509624 - 财政年份:2015
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Multiple FACTS Devices Coordination Using Synchronized Wide Area Measurements (Collaborative Proposal with UMR)
使用同步广域测量协调多个 FACTS 设备(与 UMR 的合作提案)
- 批准号:
0701744 - 财政年份:2007
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Study of Global Power System Dynamic Behavior Based on Wide-Area Frequency Measurements
基于广域频率测量的全球电力系统动态行为研究
- 批准号:
0523315 - 财政年份:2005
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
MRI: Development of Integrative Instrumentation for A Nation-Wide Power System Frequency Dynamics Monitoring Network
MRI:全国电力系统频率动态监测网络综合仪器的开发
- 批准号:
0215731 - 财政年份:2002
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Integration of Energy Storage Systems and Modern Flexible AC Transmission Devices
储能系统与现代柔性交流输电装置的集成
- 批准号:
9988868 - 财政年份:2000
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
GOALI-Technologies Joint Research Project
GOALI-Technologies联合研究项目
- 批准号:
9801139 - 财政年份:1998
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
相似国自然基金
己酸二元发酵体系中甲烷菌促进己酸生成的机制研究
- 批准号:31501461
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
多维马氏体的数学建模及其高精度数值模拟方法
- 批准号:11171218
- 批准年份:2011
- 资助金额:45.0 万元
- 项目类别:面上项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
mRNA推断皮肤损伤时间的多因子与多因素实验研究
- 批准号:81172902
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
基于孢子捕捉器和实时定量PCR技术的空气中小麦白粉菌的监测技术研究
- 批准号:31171793
- 批准年份:2011
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Building a Provable Differentially Private Real-time Data-blind ML Algorithm: A case study on Enhancing STEM Student Engagement in Online Learning
EAGER:构建可证明的差分隐私实时数据盲机器学习算法:关于增强 STEM 学生在线学习参与度的案例研究
- 批准号:
2329919 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
- 批准号:
2210198 - 财政年份:2022
- 资助金额:
$ 27.58万 - 项目类别:
Standard Grant