NSF-BSF: SHF: Small: Neural Network Verification: Abstraction, Compositional Verification and Standardization

NSF-BSF:SHF:小型:神经网络验证:抽象、组合验证和标准化

基本信息

  • 批准号:
    2211505
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Manually crafting complex software is a difficult and error-prone task. To mitigate this difficulty, engineers have begun using machine learning techniques to automatically train deep neural networks, which are software artifacts capable of performing a variety of tasks. Neural networks have been shown to excel at image recognition, speech recognition, game playing, and many other tasks, and recently there is even a trend of incorporating them in safety-critical systems, e.g., as controllers in autonomous vehicles. This raises concerns, as determining the correctness and reliability of deep neural networks is challenging. Neural networks are opaque, in the sense that they lack a logical structure that humans can comprehend. Consequently, industry best-practices such as code-reviews and refactoring are inapplicable, and it is highly difficult for engineers to reason about the behavior of neural networks and guarantee their correctness. A new set of techniques for automatically reasoning about neural networks has been proposed, and early results are promising but are limited in usability and scalability. In this project, we aim to address these obstacles and thereby make automatic verification of neural networks more widely applicable.The project brings together experts in neural network verification from Stanford University and from the Hebrew University of Jerusalem in order to pursue the following research goals: (i) develop improved and more scalable neural network verification techniques, using abstraction-refinement and residual reasoning; (ii) further improve scalability by devising hand-crafted and data-driven schemes for the compositional verification of neural networks; and (iii) begin to standardize the field of neural network verification, in order to make the technology and tools accessible to non-experts. These goals will lead to significant advances in the quality and scalability of verification techniques for neural networks and will enable the use of neural networks in many applications that are currently beyond their reach. The project has the potential for substantial impact on education and research across multiple research communities (e.g., verification, machine-learning, artificial intelligence). Also, there will be broader benefits to society as a whole, by allowing the deployment of neural networks in various real-world systems in a safe and reliable way.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
手动制作复杂的软件是一项困难且容易出错的任务。为了缓解这一困难,工程师已经开始使用机器学习技术来自动训练深度神经网络,这些网络是能够执行各种任务的软件工件。神经网络已被证明在图像识别、语音识别、游戏和许多其他任务方面表现出色,最近甚至有将它们纳入安全关键系统的趋势,例如作为自动驾驶汽车的控制器。 这引起了人们的担忧,因为确定深度神经网络的正确性和可靠性具有挑战性。神经网络是不透明的,因为它们缺乏人类可以理解的逻辑结构。因此,代码审查和重构等行业最佳实践不适用,工程师很难推理神经网络的行为并保证其正确性。 已经提出了一套用于自动推理神经网络的新技术,早期结果很有希望,但在可用性和可扩展性方面受到限制。 在这个项目中,我们旨在解决这些障碍,从而使神经网络的自动验证得到更广泛的应用。该项目汇集了来自斯坦福大学和耶路撒冷希伯来大学的神经网络验证专家,以实现以下研究目标: (i) 使用抽象细化和残差推理,开发改进的、更具可扩展性的神经网络验证技术; (ii) 通过设计用于神经网络组成验证的手工设计和数据驱动的方案,进一步提高可扩展性; (iii) 开始标准化神经网络验证领域,以使非专家也能使用该技术和工具。这些目标将导致神经网络验证技术的质量和可扩展性方面取得显着进步,并使神经网络能够在许多目前无法实现的应用中使用。 该项目有可能对多个研究社区的教育和研究(例如验证、机器学习、人工智能)产生重大影响。此外,通过允许以安全可靠的方式在各种现实世界系统中部署神经网络,将为整个社会带来更广泛的利益。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DNN Verification, Reachability, and the Exponential Function Problem
DNN 验证、可达性和指数函数问题
  • DOI:
    10.48550/arxiv.2305.06064
  • 发表时间:
    2023-05-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Omri Isac;Yoni Zohar;Clark W. Barrett;Guy Katz
  • 通讯作者:
    Guy Katz
Toward Certified Robustness Against Real-World Distribution Shifts
针对现实世界的分布变化实现经过认证的稳健性
Convex Bounds on the Softmax Function with Applications to Robustness Verification
Tighter Abstract Queries in Neural Network Verification
神经网络验证中更严格的抽象查询
  • DOI:
    10.48550/arxiv.2210.12871
  • 发表时间:
    2022-10-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elazar Cohen;Y. Elboher;Clark W. Barrett;Guy Katz
  • 通讯作者:
    Guy Katz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clark Barrett其他文献

Efficiently Synthesizing Lowest Cost Rewrite Rules for Instruction Selection
有效综合用于指令选择的最低成本重写规则
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ross G. Daly;Caleb Donovick;Caleb Terrill;J. Melchert;Priyanka Raina;Clark Barrett;Pat Hanrahan
  • 通讯作者:
    Pat Hanrahan
The nonexistence of unicorns and many-sorted L"owenheim-Skolem theorems
独角兽的不存在和多种 L"owenheim-Skolem 定理
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Przybocki;G. Toledo;Yoni Zohar;Clark Barrett
  • 通讯作者:
    Clark Barrett
Bit-Precise Reasoning Beyond Bit-Blasting
超越位爆破的位精确推理
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aina Niemetz;Erstbeurteiler Univ;Armin Biere;Assoc Zweitbeurteiler;Prof;Clark Barrett;J. Kepler;Technischen Wissenschaften;Iii Zusammenfassung
  • 通讯作者:
    Iii Zusammenfassung
Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems
迈向有保障的安全人工智能:确保人工智能系统稳健可靠的框架
  • DOI:
    10.1038/s41598-020-61135-7
  • 发表时间:
    2024-05-10
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    DaviddavidadDalrymple;Joar Skalse;Y. Bengio;Stuart Russell;Max Tegmark;S. Seshia;Steve Omohundro;Christian Szegedy;Ben Goldhaber;Nora Ammann;Aless;ro Abate;ro;Joe Halpern;Clark Barrett;Ding Zhao;Zhi;Jeannette Wing;Joshua B. Tenenbaum
  • 通讯作者:
    Joshua B. Tenenbaum

Clark Barrett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Clark Barrett', 18)}}的其他基金

POSE: Phase II: An Open-Source Ecosystem for the cvc5 SMT Solver
POSE:第二阶段:cvc5 SMT 求解器的开源生态系统
  • 批准号:
    2303489
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: SHF: Small: Efficient, Automatic, and Trustworthy Smart Contract Verification
NSF-BSF:SHF:小型:高效、自动且值得信赖的智能合约验证
  • 批准号:
    2110397
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Integrating Synthesis and Optimization in Satisfiability Modulo Theories
合作研究:SHF:小型:在可满足性模理论中集成综合和优化
  • 批准号:
    2006407
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2019 Formal Methods in Computer-Aided Design (FMCAD)
NSF 2019 年计算机辅助设计形式方法 (FMCAD) 学生旅费补助金
  • 批准号:
    1935921
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: SHF: Small: Certifiable Verification of Large Neural Networks
NSF-BSF:SHF:小型:大型神经网络的可认证验证
  • 批准号:
    1814369
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
2014 SAT/SMT Summer School
2014年SAT/SMT暑期学校
  • 批准号:
    1440070
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Breaking the Satisfiability Modulo Theories (SMT) Bottleneck in Symbolic Security Analysis
TWC:媒介:协作:打破符号安全分析中的可满足性模理论 (SMT) 瓶颈
  • 批准号:
    1228768
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
TC: EAGER: Collaborative Research: Parallel Automated Reasoning
TC:EAGER:协作研究:并行自动推理
  • 批准号:
    1049495
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Amir Pnueli Memorial Symposium
阿米尔·普努埃利纪念研讨会
  • 批准号:
    1034814
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small:Collaborative Research: Flexible, Efficient, and Trustworthy Proof Checking for Satisfiability Modulo Theories
SHF:小型:协作研究:灵活、高效且值得信赖的可满足性模理论证明检查
  • 批准号:
    0914956
  • 财政年份:
    2009
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-BSF: SHF: Small: Efficient, Automatic, and Trustworthy Smart Contract Verification
NSF-BSF:SHF:小型:高效、自动且值得信赖的智能合约验证
  • 批准号:
    2110397
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: SHF: CCF: Small: Collaborative Research: Hardware/Software Design of Durable Data Structures and Algorithms for Non-Volatile Main Memory
NSF-BSF:SHF:CCF:小型:协作研究:非易失性主存储器的持久数据结构和算法的硬件/软件设计
  • 批准号:
    1908806
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SHF: Small: NSF-BSF: Synthesis of Safe Pointer-Manipulating Programs
SHF:小:NSF-BSF:安全指针操作程序的综合
  • 批准号:
    1911149
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: SHF: CCF: Small: Collaborative Research: Hardware/Software Design of Durable Data Structures and Algorithms for Non-Volatile Main Memory
NSF-BSF:SHF:CCF:小型:协作研究:非易失性主存储器的持久数据结构和算法的硬件/软件设计
  • 批准号:
    1909715
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF-BSF: SHF: Small: Certifiable Verification of Large Neural Networks
NSF-BSF:SHF:小型:大型神经网络的可认证验证
  • 批准号:
    1814369
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了