Theory and Methods for Causal Inference in Chronic Diseases
慢性病因果推断的理论与方法
基本信息
- 批准号:1811245
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chronic diseases such as cardiovascular disease and HIV create an immense health and economic burden, both within the USA and globally. With recent technological advances, the chronic disease research enterprise is rapidly becoming data-intensive and data-driven. Massive and complex data provide unprecedented opportunities for discovering optimal treatment strategies for chronic diseases. However, these complex data also present novel challenges for statistical analysis. Patients may visit the clinic at irregular intervals, may drop out of studies, and may discontinue prescribed treatments prematurely. In addition, there may be "confounding by indication", in that some treatments may have been prescribed preferentially to sicker patients. These features can be barriers to effectively translating rich information into meaningful knowledge. The overarching theme of this project is to develop new data analysis methods that tackle these important and recurring challenges. This work aims to advance statistical science through the development of novel approaches to address these difficult challenges, where existing methods do not apply or suffer from major drawbacks. The research will also provide subject matter scientists with a principled way to approach scientific questions in these settings to discover optimal treatment strategies for patients. This research project has the following goals. 1) Develop estimators of survival distributions as a function of time to treatment discontinuation using a dynamic-regime marginal structural models approach. Treatment discontinuation arises frequently in clinical practice, complicating the analysis and interpretation. The objective here is to develop an instructive demonstration of how careful conceptualization of this problem leads to an unambiguous definition of a sensible treatment effect and to valid inferences, shaping a principled approach to dealing with treatment discontinuation. 2) Develop efficient estimators for Structural Nested Mean Models (SNMMs) from longitudinal observational studies in the presence of informative censoring using semiparametric theory. Time-varying confounding by indication is a widespread phenomenon and causes selection bias in the estimation of treatment effect. SNMMs have been proposed to overcome this issue; however, their use in practice is still unpopular, partly because the efficiency of the estimators is highly dependent on the choice of estimating equations, and the theory is still underdeveloped in many settings. The investigator plans to develop improved estimators of causal parameters in SNMMs in the presence of censoring, which gain both efficiency and robustness to nuisance model specification over existing methods. 3) Develop a new framework of continuous-time SNMMs. In many realistic situations, the outcomes and treatments are more likely to be measured at irregularly spaced time points. Most of the existing SNMMs literature uses a discrete-time setup, which is overly simplified and therefore impractical. The investigator aims to provide a unified framework for SNMMs with continuous-time processes, establishing a novel area of research in causal inference.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
诸如心血管疾病和艾滋病毒之类的慢性疾病在美国和全球范围内造成了巨大的健康和经济负担。 随着技术的最新进展,慢性病研究企业正在迅速变得密集型和数据驱动。 大量和复杂的数据为发现慢性疾病的最佳治疗策略提供了前所未有的机会。但是,这些复杂的数据还带来了统计分析的新挑战。 患者可能会以不规则的间隔去诊所,可能会退出研究,并可能过早地处方治疗。此外,可能会出现“通过指示混淆”,因为某些治疗可能已针对病人的患者开具。 这些功能可能是有效地将丰富信息转化为有意义的知识的障碍。该项目的总体主题是开发新的数据分析方法,以应对这些重要且经常出现的挑战。这项工作旨在通过开发新的方法来解决这些困难挑战,而现有方法不适用或遭受重大缺点。这项研究还将为主题科学家提供一种原则性的方法,以在这些情况下解决科学问题,以发现患者的最佳治疗策略。 该研究项目具有以下目标。 1)开发生存分布的估计量,是使用动态优势边缘结构模型方法进行治疗停用时间的函数。在临床实践中经常出现治疗停止,使分析和解释变得复杂。 这里的目的是建立一个有启发性的证明,以表明该问题的仔细概念化如何导致对明智的治疗效果的明确定义和有效的推断,从而塑造了处理终止治疗的有原则的方法。 2)在使用半参数理论进行信息审查的情况下,从纵向观察性研究中开发了有效的估计量。随时间变化的混杂是一种广泛的现象,在估计治疗效果时会导致选择偏见。 已经提出了SNMM来克服这个问题。但是,它们在实践中的使用仍然不受欢迎,部分原因是估计器的效率高度取决于估计方程的选择,并且在许多情况下,该理论仍然不发达。 研究人员计划在审查的存在下开发SNMM中因果参数的估计值的改进,这在现有方法上既可以提高效率和鲁棒性,从而提高效率和鲁棒性。 3)开发一个连续时间SNMM的新框架。在许多现实情况下,结果和治疗更可能在不规则间隔时间点测量。大多数现有的SNMMS文献都使用离散的时间设置,该设置过于简化,因此不切实际。研究人员的目的是通过连续时间流程为SNMM提供一个统一的框架,建立了因果推理的新型研究领域。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子评估和更广泛影响的评论来获得支持的标准。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flexible Imputation of Missing Data, 2nd ed.: Boca Raton, FL: Chapman & Hall/CRC Press, 2018, xxvii + 415 pp., $91.95(H), ISBN: 978-1-13-858831-8.
缺失数据的灵活插补,第二版:博卡拉顿,佛罗里达州:查普曼
- DOI:10.1080/01621459.2019.1662249
- 发表时间:2019
- 期刊:
- 影响因子:3.7
- 作者:Yang, Shu
- 通讯作者:Yang, Shu
Utilizing stratified generalized propensity score matching to approximate blocked trial designs with multiple treatment levels
利用分层广义倾向评分匹配来近似具有多个治疗水平的封闭试验设计
- DOI:10.1080/10543406.2.22.2065507
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Corder, Nathan;Yang, Shu
- 通讯作者:Yang, Shu
Integration of data from probability surveys and big found data for finite population inference using mass imputation
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Jae Kwang Kim;Y. Hwang;Paul H. Chook;Shu Yang
- 通讯作者:Jae Kwang Kim;Y. Hwang;Paul H. Chook;Shu Yang
Robust estimation for moment condition models with data missing not at random
- DOI:10.1016/j.jspi.2020.01.001
- 发表时间:2020-07
- 期刊:
- 影响因子:0.9
- 作者:Wei Li;Shu Yang;Peisong Han
- 通讯作者:Wei Li;Shu Yang;Peisong Han
Causal inference with confounders missing not at random
- DOI:10.1093/biomet/asz048
- 发表时间:2017-02
- 期刊:
- 影响因子:2.7
- 作者:Shu Yang;Linbo Wang;Peng Ding
- 通讯作者:Shu Yang;Linbo Wang;Peng Ding
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu Yang其他文献
beta-Cyclodextrin-Decorated Carbon Dots Serve as Nanocarriers for Targeted Drug Delivery and Controlled Release
β-环糊精修饰的碳点作为纳米载体用于靶向药物输送和控释
- DOI:
10.1002/cnma.201800528 - 发表时间:
2019 - 期刊:
- 影响因子:3.8
- 作者:
Yang Ting;Huang Jing Li;Wang Yi Ting;Zheng An Qi;Shu Yang;Wang Jian Hua - 通讯作者:
Wang Jian Hua
Effects of Exercise on Sleep Quality in Pregnant Women:A Systematic Review and Meta-analysis of Randomized Controlled Trials.
运动对孕妇睡眠质量的影响:随机对照试验的系统回顾和荟萃分析。
- DOI:
10.1016/j.anr.2020.01.003 - 发表时间:
2020 - 期刊:
- 影响因子:2.2
- 作者:
Shu Yang;S. Lan;Y. Yen;Y. Hsieh;P. Kung;Shao - 通讯作者:
Shao
Phosphorylation of Connexin 43 by Cdk5 Modulates Neuronal Migration During Embryonic Brain Development
Cdk5 磷酸化 Connexin 43 调节胚胎大脑发育过程中的神经元迁移
- DOI:
10.1007/s12035-015-9190-6 - 发表时间:
2016-07 - 期刊:
- 影响因子:5.1
- 作者:
Qi Guang-Jian;Chen Qiang;Chen Li-Jun;Shu Yang;Bu Lu-Lu;Shao Xiao-Yun;Zhang Pei;Jiao Feng-Juan;Shi Jin;Tian Bo - 通讯作者:
Tian Bo
Therapeutic Advances in Hyponatremia: Fluids, Diuretics, Vaptans, and More
低钠血症的治疗进展:液体、利尿剂、Vaptans 等
- DOI:
10.1097/mjt.0000000000000663 - 发表时间:
2018 - 期刊:
- 影响因子:4.2
- 作者:
Shu Yang;M. Goldin - 通讯作者:
M. Goldin
On analyzing and predicting regional taxicab service rate from trajectory data
基于轨迹数据分析预测区域出租车服务率
- DOI:
10.1109/ictis.2015.7232152 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Shu Yang;Junming Zhang;Zhihan Liu;Jinglin Li - 通讯作者:
Jinglin Li
Shu Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shu Yang', 18)}}的其他基金
Causal Inference with Irregularly Spaced Observation Times
不规则间隔观察时间的因果推断
- 批准号:
2242776 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Design, synthesis, and assembly of composite liquid crystal elastomer fibers
复合液晶弹性体纤维的设计、合成和组装
- 批准号:
2104841 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
FMRG: Threading High-Performance, Self-Morphing Building Blocks Across Scales Toward a Sustainable Future
FMRG:跨尺度构建高性能、自我变形的构建模块,迈向可持续的未来
- 批准号:
2037097 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Planning Grant: Engineering Research Center for Convergence of Scalable and Sustainable Digital Fabrication of Smart Textiles
规划资助:智能纺织品可扩展和可持续数字制造融合工程研究中心
- 批准号:
1937031 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Environmentally Responsive, Water Harvesting and Self-Cooling Building Envelopes
EAGER/合作研究:环境响应、集水和自冷却建筑围护结构
- 批准号:
1745912 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
INSPIRE Track 2: Discovery and Development of Optimized Photonic Systems for High Volume, Low Surface Area Solar Energy Harvesting: Learning from Giant Clams
INSPIRE 轨道 2:发现和开发用于大容量、低表面积太阳能收集的优化光子系统:向巨蛤学习
- 批准号:
1343159 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Programmable pattern transformation of reconfigurable polymer membranes
可重构聚合物膜的可编程图案转换
- 批准号:
1410253 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient Rare Cell Capturing in Microfluidic Devices via Multiscale Surface Design
合作研究:通过多尺度表面设计在微流体装置中高效捕获稀有细胞
- 批准号:
1263940 - 财政年份:2013
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
GOALI: A Multiscale Approach on Interfacial and Structural Interlocking Between Polymer Grafted Shape Memory Pillars
GOALI:聚合物接枝形状记忆柱之间界面和结构联锁的多尺度方法
- 批准号:
1105208 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
EFRI-SEED: Energy Minimization via Multi-Scaler Architectures From Cell Contractility to Sensing Materials to Adaptive Building Skins
EFRI-SEED:通过多尺度架构实现能量最小化,从细胞收缩性到传感材料再到自适应建筑表皮
- 批准号:
1038215 - 财政年份:2010
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似国自然基金
基于潜在结果框架和高维脑影像数据的因果中介分析理论和方法学研究
- 批准号:82304241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于因果理论的疾病肠道微生态系统建模方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于适应性随机化理论的混合臂试验设计方法及其因果推断模型研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
半参数因果推断的在弱假设下的理论、方法与应用:诚实的统计推断及与深度学习方法的融合
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂数据下因果关系有效推断的理论与方法
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
DDALAB: Identifying Latent States from Neural Recordings with Nonlinear Causal Analysis
DDALAB:通过非线性因果分析从神经记录中识别潜在状态
- 批准号:
10643212 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Small Things First: Leveraging Implementation Science to Increase Access to Infant Directed Speech for ALL Infants in Neonatal Intensive Care Units
小事优先:利用实施科学增加新生儿重症监护病房所有婴儿获得婴儿定向语音的机会
- 批准号:
10570336 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Computational methods to elucidate the role of long non-coding RNA in Congenital Heart Disease
阐明长非编码RNA在先天性心脏病中作用的计算方法
- 批准号:
10680021 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
SmartAD for Intelligent Alzheimer’s Disease(AD) Personalized Combination Therapy
SmartAD 智能阿尔茨海默病 (AD) 个性化联合治疗
- 批准号:
10701069 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
SmartAD for Intelligent Alzheimer’s Disease(AD) Personalized Combination Therapy
SmartAD 智能阿尔茨海默病 (AD) 个性化联合治疗
- 批准号:
10670481 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别: