Collaborative Research: Imaging the Beginning of Time from the South Pole: Completing the BICEP Array Survey

合作研究:从南极想象时间的开始:完成 BICEP 阵列调查

基本信息

  • 批准号:
    2220447
  • 负责人:
  • 金额:
    $ 80.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

The theory of the "Big Bang" provides an established cosmological model for the origin of our Universe from its earliest known periods through its subsequent large-scale evolution. However, this theory leaves open the question of explaining the initial conditions. Current thoughts are consistent with the entire observable Universe being spawned in a dramatic, exponential "Inflation" of a sub-nuclear volume that lasted about one trillionth of a trillionth of a trillionth of a second. Following this short inflationary period, the Universe continues to expand, but at a less rapid rate. While this basic "Inflationary paradigm" is accepted by most cosmologists, the detailed physics mechanism responsible for inflation is still not known, but there is a testable prediction that this violent space-time expansion would have produced primordial gravitational waves now propagating through the expanding Universe and forming a cosmic gravitational-wave background (CGB). The CGB amplitude defines the energy scale of Inflation that imprints a faint signature in the polarization of the Cosmic Microwave Background (CMB) radiation. Therefore, detecting this polarization signature is arguably the most important goal in cosmology today. This award will continue addressing the oldest question ever posed by mankind "How did the Universe begin?", and it does so via observations made at one of the harshest places on Earth – the Amundsen-Scott South Pole Station in Antarctica. The most recent, community driven Decadal Survey Astro2020 report “Pathways to Discovery in Astronomy and Astrophysics for the 2020s” reaffirmed the importance of search for B-modes polarization signatures of primordial gravitational waves and Inflation, and specifically endorsed the CMB Stage-4 science to be pursued by systematically supported CMB experiments in Antarctica and Chile. The recently released BICEP results place stringent limits on Inflationary models which, for the first time, go well beyond what can be done with temperature data alone, and which rule out two entire classes of previously popular single-field models—natural Inflation and simple monomial potentials. This award aims to complete deployment of all four BICEP Array receivers and then operate them as the Stage-3+ generation observing system. BICEP Array will measure the polarized sky in six frequency bands to reach an ultimate sensitivity to the amplitude of PGW of σ(r) ≲ 0.003, extrapolating from achieved performance, and after conservatively accounting for the Galactic dust, Galactic synchrotron and CMB lensing foregrounds. These measurements will be a definitive test of slow-roll models of Inflation, which generally predict a gravitational-wave signal above approximately r=0.01. BICEP Array will therefore realize the goal set by the NASA/DOE/NSF Task Force for CMB Research in 2005 to achieve sensitivity at this level, and confirmed as “the most exciting quest of all” by the Astro2010, and advance the B-mode search strongly endorsed by the Astro2020 Decadal Survey. The project will continue to provide excellent training for undergraduate and graduate students and postdoctoral fellows including those from underrepresented groups in laboratories that have exceptional track records in this regard. Cosmology and research in Antarctica both capture the public imagination, making this combination a remarkably effective vehicle for stimulating interest in science. This project advances the goals of the NSF Windows on the Universe Big Idea.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“大爆炸”的理论为我们宇宙的起源提供了一个既定的宇宙学模型,从已知的早期时期到其随后的大规模演变。但是,该理论打开了解释初始条件的问题。当前的思想与整个可观察到的宇宙相一致,以戏剧性的,指数的“通货膨胀”为核,核糖量的“通货膨胀”持续了大约一万分之一的一秒钟。在这个短期的通货膨胀期之后,宇宙继续扩大,但速度较差。虽然大多数宇宙学家都接受了这种基本的“通货膨胀范式”,但导致通货膨胀的详细物理机制仍然尚不清楚,但是可以检验的预测,这种暴力的时空扩张将产生原始的引力波,如今正在通过扩展的宇宙传播,并形成宇宙膜片背景(CGB)。 CGB放大器定义了通货膨胀的能量尺度,该量表在宇宙微波背景(CMB)辐射的极化中刻有微弱的特征。因此,检测这种极化签名可以说是当今宇宙学中最重要的目标。该奖项将继续解决人类有史以来最古老的问题“宇宙是如何开始的?”,并且通过在地球上最危险的地方之一 - 南极洲的Amundsen-Scott South Pole车站进行的观察。最新的,社区驱动的衰落调查Astro2020报告了“ 2020年代的天文学和天体物理学发现的途径”,重申了寻找B-Modes搜索B-Modes极化签名的重要性,而原始引力波和通货膨胀的极化签名,并特别认可CMB 4阶段科学,以系统地支持CMB Science和CMB的CMB实验。最近发布的二头肌结果对通货膨胀模型进行了严格的限制,这首先​​远远超出了仅使用温度数据所能完成的事情,并且排除了两种以前流行的单场模型的整个类别 - 自然通货膨胀和简单的单一潜力。该奖项旨在完成所有四个二头肌阵列接收器的部署,然后将其作为3阶段+生成观测系统运行。二头肌阵列将在六个频带中测量两极分化的天空,以达到对σ(r)≲0.003的PGW放大器的最终敏感性,从实现的性能中推断出来,并在保守地考虑了银河灰尘,银河系同步子和CMB镜头前景。这些测量值将是对慢速通货膨胀模型的明确检验,该模型通常可以预测高于r = 0.01的重力波信号。因此,二头肌阵列将实现2005年NASA/DOE/NSF工作组为CMB研究设定的目标,以在此级别上实现敏感性,并确认为Astro2010的“最令人兴奋的全部追求”,并通过Astro2020 Decadal decadal decadal decadal decadal decadal decadal decadal necation强烈认可B模式搜索。该项目将继续为本科生和研究生和博士后研究员提供出色的培训,其中包括来自实验室中代表性不足的团体的培训,这些团体在这方面具有出色的记录。南极洲的宇宙学和研究都捕捉到了公众的想象,使这种组合成为激发科学兴趣的非常有效的工具。该项目推动了NSF窗口在宇宙大想法上的目标。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估,被认为是珍贵的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BICEP/Keck. XVI. Characterizing Dust Polarization through Correlations with Neutral Hydrogen
  • DOI:
    10.3847/1538-4357/acb64c
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. C. P. Ade;Z. Ahmed;M. Amiri;D. Barkats;R. Thakur;D. Beck;C. Bischoff;J. Bock;H. Boenish;E. Bullock;V. Buza;IV J.R.Cheshire;S. Clark;J. Connors;J. Cornelison;M. Crumrine;A. Cukierman;E. Denison;M. Dierickx;L. Duband;M. Eiben;S. Fatigoni;J. Filippini;S. Fliescher;C. Giannakopoulos;N. Goeckner-wald;D. Goldfinger;J. Grayson;P. Grimes;G. Halal;G. Hall;M. Halpern;E. Hand;S. Harrison;S. Henderson;S. Hildebrandt;J. Hubmayr;H. Hui;K. Irwin;J. Kang;K. Karkare;E. Karpel;S. Kefeli;S. A. Kernasovskiy;J. Kovac;C. Kuo;K. Lau;E. Leitch;A. Lennox;K. Megerian;L. Minutolo;L. Moncelsi;Y. Nakato;T. Namikawa;H. T. Nguyen;R. O’Brient;IV R.W.Ogburn;S. Palladino;M. Petroff;T. Prouvé;C. Pryke;B. Racine;C. Reintsema;S. Richter;A. Schillaci;B. Schmitt;R. Schwarz;C. Sheehy;B. Singari;A. Soliman;T. S. Germaine;B. Steinbach;R. Sudiwala;G. Teply;K. Thompson;J. Tolan;C. Tucker;A. Turner;C. Umilta;C. Vergés;A. Vieregg;A. Wandui;A. Weber;D. Wiebe;J. Willmert;C. Wong;W.L.K. Wu;H. Yang;K. Yoon;E. Young;C. Yu;L. Zeng;C. Zhang;S. University;Kipacslac;U. Columbia;HarvardCfA;Caltech;U. Cincinnati;S. University;Nasa Jpl;M. I. O. Astrophysics;U. Chicago;U. Minnesota;Nist;Sbt Grenoble;U. I. Urbana-Champaign;H. University;T. U. O. Tokyo;Aix-Marseille Université;Brookhaven National Laboratory
  • 通讯作者:
    B. C. P. Ade;Z. Ahmed;M. Amiri;D. Barkats;R. Thakur;D. Beck;C. Bischoff;J. Bock;H. Boenish;E. Bullock;V. Buza;IV J.R.Cheshire;S. Clark;J. Connors;J. Cornelison;M. Crumrine;A. Cukierman;E. Denison;M. Dierickx;L. Duband;M. Eiben;S. Fatigoni;J. Filippini;S. Fliescher;C. Giannakopoulos;N. Goeckner-wald;D. Goldfinger;J. Grayson;P. Grimes;G. Halal;G. Hall;M. Halpern;E. Hand;S. Harrison;S. Henderson;S. Hildebrandt;J. Hubmayr;H. Hui;K. Irwin;J. Kang;K. Karkare;E. Karpel;S. Kefeli;S. A. Kernasovskiy;J. Kovac;C. Kuo;K. Lau;E. Leitch;A. Lennox;K. Megerian;L. Minutolo;L. Moncelsi;Y. Nakato;T. Namikawa;H. T. Nguyen;R. O’Brient;IV R.W.Ogburn;S. Palladino;M. Petroff;T. Prouvé;C. Pryke;B. Racine;C. Reintsema;S. Richter;A. Schillaci;B. Schmitt;R. Schwarz;C. Sheehy;B. Singari;A. Soliman;T. S. Germaine;B. Steinbach;R. Sudiwala;G. Teply;K. Thompson;J. Tolan;C. Tucker;A. Turner;C. Umilta;C. Vergés;A. Vieregg;A. Wandui;A. Weber;D. Wiebe;J. Willmert;C. Wong;W.L.K. Wu;H. Yang;K. Yoon;E. Young;C. Yu;L. Zeng;C. Zhang;S. University;Kipacslac;U. Columbia;HarvardCfA;Caltech;U. Cincinnati;S. University;Nasa Jpl;M. I. O. Astrophysics;U. Chicago;U. Minnesota;Nist;Sbt Grenoble;U. I. Urbana-Champaign;H. University;T. U. O. Tokyo;Aix-Marseille Université;Brookhaven National Laboratory
BICEP/Keck. XVII. Line-of-sight Distortion Analysis: Estimates of Gravitational Lensing, Anisotropic Cosmic Birefringence, Patchy Reionization, and Systematic Errors
二头肌/凯克。
  • DOI:
    10.3847/1538-4357/acc85c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ade, P. A. R.;Ahmed, Z.;Amiri, M.;Barkats, D.;Thakur, R. Basu;Bischoff, C. A.;Beck, D.;Bock, J. J.;Boenish, H.;Bullock, E.
  • 通讯作者:
    Bullock, E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Bischoff其他文献

CMB-S4: Iterative Internal Delensing and r Constraints
CMB-S4:迭代内部脱镜和 r 约束
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Sebastian Belkner;Julien Carron;L. Legrand;C. Umilta;C. Pryke;Colin Bischoff
  • 通讯作者:
    Colin Bischoff

Colin Bischoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Bischoff', 18)}}的其他基金

Understanding instrumental systematics for the CMB-S4 ultra-deep survey
了解 CMB-S4 超深调查的仪器系统学
  • 批准号:
    2009469
  • 财政年份:
    2020
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: Software: NCSI: HDR: Building An HPC/HTC Infrastructure For The Synthesis And Analysis Of Current And Future Cosmic Microwave Background Datasets
协作研究:要素:软件:NCSI:HDR:构建 HPC/HTC 基础设施以合成和分析当前和未来的宇宙微波背景数据集
  • 批准号:
    1835536
  • 财政年份:
    2018
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Standard Grant

相似国自然基金

基于磁共振APT成像的乳腺癌新辅助治疗敏感性预测研究
  • 批准号:
    82302153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肝纤维化组织微结构特性弥散磁共振成像技术研究
  • 批准号:
    62371194
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
氧敏感MRI分子成像评价HIF1α-VEGF信号通路诱导糖尿病心肌缺氧损伤及微循环障碍的机制研究
  • 批准号:
    82371925
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
时域自成像效应中傅立叶变换及应用研究
  • 批准号:
    62375071
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
面向强散射环境的关联成像方法研究
  • 批准号:
    62375215
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334542
  • 财政年份:
    2024
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了