Path Sampling and Dynamic Risk Analysis
路径采样和动态风险分析
基本信息
- 批准号:2220276
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Chemical manufacturing processes can pose serious hazards and so safety considerations play an important role in their design. Indeed, to minimize the risk of catastrophic accidents, which can result in loss of human life or major environmental damage, extensive instrumentation such as control systems, alarms, and safety interlocks, are routinely employed in chemical processes. While such efforts are generally successful in mitigating the most common and well-understood abnormal events, it is challenging to detect the onset and mitigate the effects of infrequent and unexpected abnormal events in real-time. Importantly, such rare safety events, which have not been considered in the plant design, can lead to the most severe consequences. This project extends the prior work of this research team in adapting computational strategies developed to study the motion of molecules to uncover conditions leading to plant shutdowns or accidents resulting from rare and highly abnormal safety events. Fortunately, expensive plant shutdowns or dangerous accidents rarely occur, but consequently, little (if any) data are available to alert plant operators in sufficient time to take safety actions to circumvent them. This proposal seeks to continue developing strategies for setting alarms and carrying out safety actions more reliably in the face of unanticipated abnormal events. These strategies have the potential to prevent large financial losses, prevent serious injuries, and save lives. To advance path-sampling strategies for identifying unlikely plant shutdowns and accidents, the research team will seek new strategies to set alarms and apply safety systems in a rigorous manner. The research program will begin with well-established strategies, such as dynamic risk-analysis (DRA – developed over the past 15 years by this project's PI), for estimating the failure probabilities associated with well-known postulated abnormal events. Using noise to represent an array of rare un-postulated abnormal events, computational experiments will be carried out to relate committor probabilities (functions predicting the probability of commitment to a path to failure) to process variables for which alarm thresholds and safety systems will be created - this will enable the application of DRA, for the first time, to evaluate online the effectiveness of the safety systems by estimating process failure probabilities in response to un-postulated rare events. In so doing, the researchers will undertake the design of new multi-variable real-time alarm systems, which not only will lead to safer operation by eliminating false-negatives, but also mitigate the nuisance of false-positive alarms. As these strategies are developed, they will be tested on well-known industrial processes (e.g., steam-methane reforming (SMR) to produce hydrogen) using historical operating data provided by the PI’s long-term collaborator, Air Liquide. These data are essential to understanding how, over several years, rare paths to plant shutdowns and accidents are initiated – with final safety system responses carried out in just minutes to few hours. Gradually, application of these strategies will move from exothermic, continuous-stirred tank reactors (CSTRs) to more complex polymerization reactors, and ultimately will scale-up to integrated chemical processes with recycle.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
化学制造过程可能构成严重危害,因此安全考虑在其设计中起着重要作用。确实,为了最大程度地减少灾难性事故的风险,这可能导致人类生命或重大环境损失,广泛的仪器,例如控制系统,警报和安全互锁,是在化学过程中常规进行的。尽管这种努力通常在减轻最常见和充分理解的异常事件方面取得了成功,但要检测出发作并减轻实时异常异常事件的影响是挑战的。重要的是,植物设计中未考虑的罕见安全事件可能会导致最严重的后果。该项目扩展了该研究团队的先前工作,以调整开发的计算策略,以研究分子的运动,以发现导致工厂关闭或因罕见和高度异常安全事件而导致的事故。幸运的是,昂贵的工厂关闭或危险事故很少发生,但因此,很少有数据(如果有)可以在足够的时间内提醒工厂操作员以采取安全措施来规避它们。该提案旨在继续制定策略,以面对意外的异常事件,更可靠地制定警报和安全行动。这些策略有可能预防巨大的财务损失,防止严重伤害并挽救生命。为了促进识别意外的工厂关闭和事故的路径采样策略,研究团队将寻求新的策略来设置警报并以严格的方式应用安全系统。该研究计划将始于建立良好的策略,例如动态风险分析(DRA - 在过去的15年中由该项目的PI开发),用于估计与使用噪声代表一系列罕见的未验证异常事件相关的失败可能性,计算实验将在预测委员会的可能性上进行概率(可变性),以进行易于变化(可变性),以便将其函数变量(功能均可实现),以实现概率(功能)。将创建系统 - 这将使DRA的应用首次应用于在线评估安全系统的有效性,以估算未响应的罕见事件的过程故障可能性。这样一来,研究人员将对新的多变量实时警报系统进行设计,这不仅可以通过消除虚假阴性来实现安全操作,而且还可以减轻虚假阳性警报的滋扰。随着这些策略的制定,将使用PI的长期合作者Air Liquide提供的历史工作数据对知名的工业过程(例如蒸汽 - 甲烷改革(SMR)生产氢)进行测试。这些数据对于了解几年来启动停工和事故的罕见途径至关重要 - 最终的安全系统响应在短短几分钟到几个小时内就进行了。逐渐地,这些策略的应用将从放热,连续刺激的储罐反应堆(CSTR)转变为更复杂的聚合反应堆,并最终将扩展到与回收的集成化学过程。该奖项反映了NSF的法定任务,并通过使用该基金会的知识优点和广泛的影响来评估NSF的法定任务,并被认为是诚实的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren Seider其他文献
Warren Seider的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren Seider', 18)}}的其他基金
EAGER: GOALI: REAL-D Path-Sampling Algorithms to Understand Rare Safety Events and Improve Alarm Systems
EAGER:GOALI:用于了解罕见安全事件并改进警报系统的 REAL-D 路径采样算法
- 批准号:
1839535 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
GOALI: Collaborative Research: Model-Predictive Safety Systems for Predictive Detection of Operation Hazards
GOALI:协作研究:用于预测检测操作危险的模型预测安全系统
- 批准号:
1704833 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: GOALI: Synergistic Improvement of Process Safety and Product Quality Using Process Databases
合作研究:GOALI:使用过程数据库协同改进过程安全和产品质量
- 批准号:
1066475 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Dynamic Risk Assessment of Inherently Safe Chemical Processes: Using Accident Precursor Data
本质安全化学过程的动态风险评估:使用事故前兆数据
- 批准号:
0553941 - 财政年份:2006
- 资助金额:
$ 35万 - 项目类别:
Continuing grant
Support For International Federation of Automatic Control (IFAC) Symposium on Dynamics and Control of Process Systems (DYCOPS-7); July 5-7, 2004; Cambridge, MA
支持国际自动控制联合会 (IFAC) 过程系统动力学与控制研讨会 (DYCOPS-7);
- 批准号:
0432234 - 财政年份:2004
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Design and Model-based Control of Nonlinear Chemical Processes
合作研究:非线性化学过程的设计和基于模型的控制
- 批准号:
0101237 - 财政年份:2001
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Azeotropic Distillation with Internal Decanters
使用内部卧螺离心机进行共沸蒸馏
- 批准号:
9904099 - 财政年份:1999
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Combined Research-Curriculum Development in Process Design, Optimization, and Control
工艺设计、优化和控制方面的联合研究课程开发
- 批准号:
9527441 - 财政年份:1995
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Optimal Control of the Czochralski Crystallization Process
直拉结晶过程的优化控制
- 批准号:
9400775 - 财政年份:1994
- 资助金额:
$ 35万 - 项目类别:
Continuing grant
Design and Operation of High Performance Chemical Processes
高性能化学工艺的设计和操作
- 批准号:
9114080 - 财政年份:1991
- 资助金额:
$ 35万 - 项目类别:
Continuing grant
相似国自然基金
视觉注意的时间动态采样:认知功能和神经机制
- 批准号:32371086
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
纳米限域“活体采样-萃取一体化”探针制备及其在阿尔兹海默症脑脊液神经递质动态监测中的应用
- 批准号:82304447
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机波长幅值采样的大动态范围分布式声波传感研究
- 批准号:62205037
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
线性正则变换域中稀疏相位恢复和动态采样的研究
- 批准号:12261059
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
稠密预测中任务自适应的上采样算子动态化
- 批准号:62106080
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Integrated Network Analysis of RADx-UP Data to Increase COVID-19 Testing and Vaccination Among Persons Involved with Criminal Legal Systems (PCLS)
RADx-UP 数据的综合网络分析可提高刑事法律系统 (PCLS) 相关人员的 COVID-19 检测和疫苗接种率
- 批准号:
10879972 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Dynamic Neural Computations Underlying Cognitive Control in Bulimia Nervosa
神经性贪食症认知控制下的动态神经计算
- 批准号:
10638708 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
- 批准号:
10736507 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别: