Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
基本信息
- 批准号:10736507
- 负责人:
- 金额:$ 31.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAddressAlgorithmsBenchmarkingBinding SitesBiochemicalBiological ModelsBiologyBirthCRISPR interferenceCell Fate ControlCell physiologyCellsCellular biologyCessation of lifeCommunitiesComplementComplexComputersDNA BindingDNA sequencingDataData AnalysesData SetDevelopmentDimensionsDoseElementsEquationError SourcesEukaryotic CellGATA1 geneGene ExpressionGene Expression RegulationGenesGeneticGenetic CodeGenetic TranscriptionGenomic approachGenomicsGoalsGrantGraphInformaticsKnowledgeLMO2 geneLabelLearningMachine LearningMathematicsMeasurementMetabolicMethodsModalityModelingMutationNamesNaturePathologic ProcessesPatternPhysiological ProcessesProceduresProcessPublishingRNARNA SplicingRegulationResearchSamplingStochastic ProcessesSystems BiologySystems TheoryTAL1 geneTechniquesTestingTimeWorkcofactorcombinatorialcomputational pipelinescomputer frameworkcomputerized toolsdata acquisitiondata integrationdata spacedifferential geometrydynamic systemenvironmental changeexperimental studyextracellulargene regulatory networkgenome-widegenomic datahigh dimensionalityimprovedin silicoinformatics toolinsightmathematical modelmolecular dynamicsmultimodal datapredictive modelingreconstructionresponsesingle cell analysisstatisticssuccesstooltool developmenttranscription factortranscriptometranscriptomicsvector
项目摘要
Understanding how cells respond to environmental changes is a fundamental task in systems biology and has
profound biomedical implications. Mathematical modeling on small network motifs using dynamical systems
theories has been successful on providing mechanistic insight and guidance, but generalization to a genome-
wide intertwined gene regulatory network is challenging. Single cell genomics approaches emerge as powerful
tools for studying cellular processes, but the destructive nature of most single cell techniques makes it
unfeasible to extract dynamical information of cellular processes. In addition, a number of grand challenges
impede further development of the field, such as trajectory inference, effect of various sources of errors on
data analysis, and validating and benchmarking tools for single cell measurements and analyses. The goal of
this proposed research is to tackle these challenges through integrating dynamical systems modeling into
single cell genomics analyses. The proposed research is based on recent advances in the single cell genomics
field that one can extract both transcriptome (x) and estimation of RNA velocity (i.e., instant time derivatives of
transcriptome, dx/dt) from single cell genomics data. We further developed a unified theoretical framework that
allows estimating the velocity information from various types of single cell data, and a machine learning based
computational pipeline of reconstructing systems biology equations for genomewide regulatory networks,
together with a computer package, dynamo, released to the community. This integration between single cell
genomics analyses and systems biology modeling provides quantitative mechanistic and dynamics
information. We propose to further develop our package and computational framework to address several
limitations in our published work. In Aim 1, we will first develop dynamo to interface with other single cell
analysis and dynamics modeling packages, and expand the types of single cell data to be analyzed. Then we
will develop and test a discrete dynamical model for full stochastic cellular dynamics based on the graph
representation of discrete vector fields. In Aim 2, we will first develop a systematic pipeline of integrating data
of multi-modality (e.g., ATAC-seq, DNA sequencing and binding site analyses, etc) and dynamo to identify
genetic codes of combinatorial function of transcriptional factors, the so-called composite elements in genetics.
Eukaryotic cells use a combination of a finite number of transcription factors to generate a large number of
different target gene regulation patterns. Cracking the genetic code at the genome-wide level is fundamental to
cell biology but challenging despite extensive efforts. Then we will expand the pipeline to reconstruct biology-
informed systems biology models for the genomowide gene regulation. We will evaluate the in silico
predictions from the model against several Perturb-seq datasets.
了解细胞对环境变化的反应是系统生物学的基本任务,并且
深刻的生物医学意义。使用动态系统上的小型网络图案上的数学建模
理论已经成功地提供了机械洞察力和指导,但是对基因组的概括 -
广泛的相互交织的基因调节网络具有挑战性。单细胞基因组学接近功能强大
研究细胞过程的工具,但是大多数单细胞技术的破坏性性使得
不可行,无法提取细胞过程的动态信息。此外,许多挑战
阻碍该领域的进一步发展,例如轨迹推断,各种错误来源对
数据分析以及验证和基准测试工具,用于单细胞测量和分析。目标
这项拟议的研究是通过将动态系统建模整合到
单细胞基因组学分析。拟议的研究基于单细胞基因组学的最新进展
可以提取转录组(x)和RNA速度估计的场(即,
来自单细胞基因组学数据的转录组,DX/DT)。我们进一步开发了一个统一的理论框架
允许从各种单元数据中估算速度信息,以及基于机器学习的速度信息
重建系统范围监管网络的重建系统生物学方程的计算管道,
连同计算机软件包Dynamo发给了社区。单个单元之间的这种整合
基因组学分析和系统生物学建模提供定量机械和动力学
信息。我们建议进一步开发我们的软件包和计算框架以解决几个
我们发表的工作中的局限性。在AIM 1中,我们将首先开发Dynamo与其他单个单元格接口
分析和动态建模包,并扩展要分析的单个单元数据的类型。然后我们
将开发并测试基于图的完整随机蜂窝动力学的离散动力学模型
离散矢量字段的表示。在AIM 2中,我们将首先开发集成数据的系统管道
多模式(例如ATAC-SEQ,DNA测序和结合位点分析等)和发电机以识别
转录因子的组合功能的遗传代码,即遗传学中所谓的复合元素。
真核细胞使用有限数量的转录因子的组合来产生大量
不同的靶基因调节模式。在全基因组水平上破解遗传密码是至关重要的
细胞生物学,但尽管如此,但仍充满挑战。然后,我们将扩展管道以重建生物学 -
用于基因诺维德基因调节的知情系统生物学模型。我们将评估硅
从模型对几个wisturb-seq数据集进行预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianhua Xing其他文献
Jianhua Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianhua Xing', 18)}}的其他基金
Role of the Snail1-Twist-p21 axis on cell cycle arrest and renal fibrosis development
Snail1-Twist-p21 轴在细胞周期停滞和肾纤维化发展中的作用
- 批准号:
10062964 - 财政年份:2018
- 资助金额:
$ 31.8万 - 项目类别:
Coupling between cell cycle arrest and epithelial-to-mesenchymal transition in renal fibrosis development
肾纤维化发展中细胞周期停滞与上皮间质转化之间的耦合
- 批准号:
10923257 - 财政年份:2018
- 资助金额:
$ 31.8万 - 项目类别:
Role of the Snail1-Twist-p21 axis on cell cycle arrest and renal fibrosis development
Snail1-Twist-p21 轴在细胞周期停滞和肾纤维化发展中的作用
- 批准号:
10300999 - 财政年份:2018
- 资助金额:
$ 31.8万 - 项目类别:
Dynamics and mechanism of mechanical regulation of bacterial flagellar motor swit
细菌鞭毛运动开关的机械调节动力学及机制
- 批准号:
8423015 - 财政年份:2012
- 资助金额:
$ 31.8万 - 项目类别:
Dynamics and mechanism of mechanical regulation of bacterial flagellar motor swit
细菌鞭毛运动开关的机械调节动力学及机制
- 批准号:
8269787 - 财政年份:2012
- 资助金额:
$ 31.8万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
- 批准号:
10776871 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别:
Improved Annotation of Echinoderm Genomic Features
棘皮动物基因组特征的改进注释
- 批准号:
10715583 - 财政年份:2023
- 资助金额:
$ 31.8万 - 项目类别: