Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
基本信息
- 批准号:10729275
- 负责人:
- 金额:$ 47.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AMPA ReceptorsAffectAftercareAnimalsAntiepileptic AgentsBiological ProcessBlood VesselsBrainBrain NeoplasmsCell CommunicationCellsClassificationClinical TrialsClone CellsCommunicationCommunitiesCompetenceComputer ModelsDataDedicationsDevelopmentElectrophysiology (science)ExcisionExhibitsExtracellular MatrixFavorable Clinical OutcomeGlioblastomaGliomaGlutamatesHeterogeneityHigh Frequency OscillationImmunologicsIndividualInvadedLevetiracetamLocationLogistic RegressionsMagnetic Resonance ImagingMalignant - descriptorMalignant GliomaMapsMeasurementMeasuresMetabolicMetabolic PathwayMicroscopicMitochondriaModelingMolecularMultiomic DataNatureNeuroepithelial, Perineurial, and Schwann Cell NeoplasmNeuronsOperative Surgical ProceduresOxidative PhosphorylationPathway interactionsPatientsPhenotypeProliferatingRadiation therapyRecurrenceResectedResistanceResolutionResourcesRouteSamplingSignal PathwaySignal TransductionSliceSpecimenSynapsesSystemSystems BiologyTestingTherapeuticTimeTissuesTreatment EfficacyTumor MarkersTumor PromotionWorkcancer proteomicscell growthcell motilitycell typechemotherapyclinically relevantcohortdata integrationdeep learningdesigndynamical evolutionexperimental studyin vivoinhibitorinnovationmultiple omicsneoplastic cellneuronal tumornovelpatient derived xenograft modelpharmacologicpre-clinicalprogenitorrandom forestresponsesingle-cell RNA sequencingstandard of caretherapeutic developmenttherapy resistanttumortumor metabolismtumor progressiontumorigenesiswhite matter
项目摘要
ABSTRACT – PROJECT 1
The central premise of our CSBC MIT/DFCI Center for Systems Biology in Glioblastoma is that high-content
systems-level measurements at molecular, microscopic, and macroscopic scales with spatial resolution will
enable the development of computational models to map and predict tumor dynamics leveraging data integration
and deconvolution for computational modeling of the glioblastoma-microenvironment. The establishment of this
novel GBM model will support the identification of critical signaling and metabolic pathways and networks
regulating tumor progression and therapeutic resistance, while providing biomarkers of tumor state and efficacy
for therapeutic developement. Project 1 will focus on elucidating networks coordinating the tumor-neuronal
interface. Recent results uncovered the ability of subpopulations of glioblastoma cells to organize in brain tumor
cell networks that include the formation of glutamatergic synapses formed between individual glioblastoma cells
and neural cells from the normal brain. The establishment of synaptic connectivity was proposed to promote
tumor cell movement along white matter, therefore implying that the mutually connected glioma cells may drive
invasion of the normal brain, which is the primary mechanism of progression and aggressiveness of malignant
glioma that ultimately renders these tumors incurable. We will now leverage key preclinical resources established
by our labs, including an integrated computational-experimental framework, annotated GBM patient-derived
xenografts (PDXs) for ex vivo and in vivo mechanistic experiments to derive a model of glioma-neuron
interactions that drive the malignant nature of glioblastoma and how perturbation of this signaling network affects
tumor proliferation, invasion, and therapeutic resistance. In Aim 1, we will use our innovative multi-omics platform
with ex vivo slice culture models to investigate the ability of neurons to support tumor cell growth and invasion
and affect cell state and develop and implement computational modeling strategies to model the dynamic
evolution of different cell types and tumor cell clones over time and in response to stimulation. Aim 2 will allow
further parametrization of the computational model with data acquired from in vivo orthotopic models tested
for the effect of anti-epileptic drugs on tumor proliferation and invasion in the context of standard of care treatment
with radiotherapy and recurrence. In Aim 3, we will analyze the impact of anti-epileptic therapeutics on the
glioma-brain network in clinical trial tissue specimens with our multi-omics platform, allowing to test and
optimize the model accuracy with clinically relevant data.
摘要 - 项目1
我们的CSBC MIT/DFCI系统生物学中心的中心前提是高含量
具有空间分辨率的分子,微观和宏观尺度的系统级测量
使计算模型的开发能够映射和预测利用数据整合的肿瘤动力学
和用于胶质母细胞瘤微环境的计算建模的反卷积。建立这个
新型GBM模型将支持识别临界信号传导和代谢途径和网络
调节肿瘤进展和热耐药性,同时提供肿瘤状态和效率的生物标志物
用于热发育。项目1将着重于阐明网络协调肿瘤神经元
界面。最近的结果发现了胶质母细胞瘤细胞在脑肿瘤中组织的亚群的能力
细胞网络包括形成单个胶质母细胞瘤细胞之间形成的谷氨酸能突触
和正常大脑的神经细胞。提出了突触连通性的建立来促进
肿瘤细胞沿白质运动,因此表明相互连接的神经胶质瘤细胞可能会驱动
正常大脑的入侵,这是进展和侵略性的主要机制
神经瘤最终使这些肿瘤无法治愈。现在,我们将利用建立的关键临床前资源
由我们的实验室,包括集成的计算实验框架,注释的GBM患者衍生
异种移植物(PDXS)用于体内和体内机械实验,以得出神经胶质瘤模型
驱动胶质母细胞瘤的恶性本质以及该信号网络的扰动的相互作用如何影响
肿瘤增殖,侵袭和热阻力。在AIM 1中,我们将使用我们的创新多派平台
使用离体切片培养模型研究神经元支持肿瘤细胞生长和浸润的能力
并影响细胞状态以及开发和实施计算建模策略,以建模动态
随着时间的推移,不同细胞类型和肿瘤细胞克隆的演变以及响应刺激的演变。 AIM 2将允许
计算模型的其他参数,该参数是从测试的体内原位模型中获取的数据
在护理标准的情况下,抗癫痫药对肿瘤增殖和侵袭的影响
放疗和复发。在AIM 3中,我们将分析抗癫痫疗法对
临床试验组织标本中的神经胶质瘤 - 脑网络具有我们的多词平台,允许测试和
通过临床相关数据优化模型的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathalie YR Agar其他文献
Nathalie YR Agar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathalie YR Agar', 18)}}的其他基金
Defining mechanisms to promote antitumor immunity by modulating one-carbon metabolism
定义通过调节一碳代谢促进抗肿瘤免疫的机制
- 批准号:
10565099 - 财政年份:2023
- 资助金额:
$ 47.3万 - 项目类别:
Dynamics of Cellular Brain Metabolism Using Mass Spectrometry Imaging
使用质谱成像研究细胞脑代谢动力学
- 批准号:
10556434 - 财政年份:2022
- 资助金额:
$ 47.3万 - 项目类别:
Dynamics of cellular brain metabolism using mass spectrometry imaging
使用质谱成像研究细胞脑代谢动力学
- 批准号:
10418219 - 财政年份:2022
- 资助金额:
$ 47.3万 - 项目类别:
Real-Time Stereotactic Mass Spectrometry Tissue Analysis for Intraoperative Neuro
术中神经的实时立体定向质谱组织分析
- 批准号:
7981836 - 财政年份:2010
- 资助金额:
$ 47.3万 - 项目类别:
相似国自然基金
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
- 批准号:62306195
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
长期护理保险制度与老年照护供给效率及公平:影响机制与政策措施
- 批准号:72274117
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
长期护理保险制度与老年照护供给效率及公平:影响机制与政策措施
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
深海土阻力时变特性影响下管线轴向走管的变形机理及防护理论研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深海土阻力时变特性影响下管线轴向走管的变形机理及防护理论研究
- 批准号:52101325
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
PKA-Hypothermia Bridge: A New Therapeutic Approach for Traumatic Brain Injury
PKA-低温桥:创伤性脑损伤的新治疗方法
- 批准号:
7998177 - 财政年份:2009
- 资助金额:
$ 47.3万 - 项目类别:
PKA-Hypothermia Bridge: A New Therapeutic Approach for Traumatic Brain Injury
PKA-低温桥:创伤性脑损伤的新治疗方法
- 批准号:
7754031 - 财政年份:2009
- 资助金额:
$ 47.3万 - 项目类别: