Dynamics of cellular brain metabolism using mass spectrometry imaging
使用质谱成像研究细胞脑代谢动力学
基本信息
- 批准号:10418219
- 负责人:
- 金额:$ 44.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAgingAntibodiesAntioxidantsAstrocytesBehaviorBiosensorBrainCell Culture TechniquesCellsCitric Acid CycleClustered Regularly Interspaced Short Palindromic RepeatsComplementComplexDataDiseaseEnergy MetabolismEnergy SupplyEnergy-Generating ResourcesExhibitsFatty AcidsFire - disastersFoundationsFreezingFunctional disorderFutureGlucoseGlutamineGlycolysisHabitsHeatingHippocampus (Brain)IndividualInterneuronsKetone BodiesKnowledgeLabelLeadLearningLipidsMapsMeasurementMeasuresMediatingMetabolicMetabolic PathwayMetabolismMethodsMicrotomyMusNADPNerve DegenerationNeurodegenerative DisordersNeuronsOxidantsOxidation-ReductionOxygenParvalbuminsPathway interactionsPentosephosphate PathwayPharmacologyPhysiologicalPlayPositioning AttributePositron-Emission TomographyProcessPropertyProteinsRegulationRoleSignal TransductionSliceStable Isotope LabelingStressTechnologyTestingTherapeuticTimeTissuesWorkbasebrain cellbrain healthbrain metabolismbrain tissuecell typeexperimental studyflexibilitygene productgranule cellimaging capabilitiesimaging modalityin vivoinhibitorknock-downmass spectrometric imagingmetabolic abnormality assessmentmetabolomicsneuronal metabolismneuropathologypreservationpublic health relevancerelating to nervous systemresponsesensor
项目摘要
PROJECT SUMMARY/ABSTRACT
Brain function demands a lot of metabolic energy, often in brief, local bursts. The ability of each brain cell’s
metabolic machinery to respond to this energy demand is crucial both for the immediate functional properties of
brain signaling and for the long-term health of the brain. Although the core metabolic pathways are shared by
all types of brain cells, we hypothesize that different brain cell types are likely to emphasize different metabolic
components in response to acute energy demand. For instance, neurons and astrocytes are thought to play
complementary metabolic roles; and neurons that fire nearly constantly, or episodically at very high rates, may
manage their metabolism differently from typically quiescent neurons. Dysfunction in metabolism can lead to
disease and neurodegeneration, and the metabolic differences between cell types may underlie the very cell-
type-specific vulnerabilities of brain cells seen in neurodegenerative diseases.
To study the distinctive, dynamic metabolic responses of specific cell types in intact tissue, rather than cell
culture, we will perform physiological experiments on acute brain slices from mice, using neuronal stimulation,
13C metabolic labeling, and metabolic inhibitors. We will then use mass spectrometry imaging (MSI) to
quantitatively map the levels of numerous metabolites in thin sections from those brain slices. Fast thermal
preservation (flash heating and freezing) of the brain slices at specific times after stimulation or application of
13C-labeled metabolites allows us to measure a fine time course of metabolic changes, and the imaging capability
allows us to obtain metabolic measurements from specific cell types. Dentate granule cell (DGC) metabolic
behavior will be isolated by MSI of the compact granule cell layer of the hippocampus; the metabolic signals from
single astrocytes and fast-spiking parvalbumin-positive interneurons will be isolated using cell-type specific
signatures, based on correspondence with labeling by established antibodies.
We will use these methods to construct a rich picture of how these individual cell types use their core metabolic
pathways (glycolysis, pentose phosphate pathway, TCA cycle), both at baseline and dynamically in response to
neuronal stimulation. We will test the specific hypotheses that in DGCs, neuronal glycolysis is upregulated after
stimulation, and that the pentose phosphate pathway then becomes engaged. Experiments using fuel molecules
with different stable isotope labels will reveal how neurons and astrocytes flexibly utilize a mixture of energy
sources. By combining data on metabolite levels with data on the activity of individual metabolic pathways, we
can learn not only what the metabolic changes are, but also the positions along each pathway at which key
regulatory changes occur. And we will test the hypothesis that DGCs, astrocytes, and fast-spiking interneurons
use their core metabolic pathways distinctively in response to neuronal stimulation.
This project will reveal the distinctive metabolism of different cell types in healthy brain tissue and lay a foundation
for future work on how metabolism may go awry (as is suspected) in aging or in neurodegenerative disease.
项目概要/摘要
大脑功能需要大量的代谢能量,通常是短暂的、局部的爆发。
响应这种能量需求的代谢机制对于直接功能特性至关重要
尽管核心代谢途径是共享的。
所有类型的脑细胞,我们追求不同的脑细胞类型可能强调不同的代谢
例如,神经元和星形胶质细胞被认为会发挥作用。
互补的代谢作用;几乎持续或间歇性地以非常高的速率放电的神经元可能
其新陈代谢的管理方式与典型的静止神经元不同。新陈代谢功能障碍可能会导致。
疾病和神经退行性疾病,以及细胞类型之间的代谢差异可能是细胞-
神经退行性疾病中脑细胞的特定类型脆弱性。
研究完整组织中特定细胞类型的独特动态代谢反应,而不是细胞
培养,我们将使用神经刺激对小鼠的急性脑切片进行生理实验,
然后我们将使用质谱成像 (MSI) 来进行 13C 代谢标记和代谢抑制剂。
定量绘制这些脑切片薄片中多种代谢物的水平。
刺激或应用后特定时间保存(快速加热和冷冻)脑切片
13C 标记的代谢物使我们能够测量代谢变化的精细时间过程,并且成像能力
使我们能够获得特定细胞类型的代谢测量结果。
行为将通过海马致密颗粒细胞层的 MSI 来分离;
将使用细胞类型特异性分离单个星形胶质细胞和快速尖峰小清蛋白阳性中间神经元
签名,基于与已建立的抗体标记的对应关系。
我们将使用这些方法来构建一幅丰富的图景,展示这些个体细胞类型如何利用其核心代谢
途径(糖酵解、磷酸戊糖途径、TCA 循环),无论是在基线还是动态响应
我们将测试 DGC 中神经元糖酵解在刺激后上调的具体假设。
刺激,然后磷酸戊糖途径开始使用燃料分子进行实验。
不同的稳定同位素标记将揭示神经元和星形胶质细胞如何灵活地利用能量混合物
通过将代谢水平数据与个体代谢途径活动数据相结合,我们
不仅可以了解代谢变化是什么,还可以了解每个途径的关键位置
我们将检验 DGC、星形胶质细胞和快速尖峰中间神经元的假设。
独特地利用其核心代谢途径来响应神经元刺激。
该项目将揭示健康脑组织中不同细胞类型的独特代谢,并奠定基础
未来研究新陈代谢如何在衰老或神经退行性疾病中出错(正如所怀疑的那样)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathalie YR Agar其他文献
Nathalie YR Agar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathalie YR Agar', 18)}}的其他基金
Project 1: Deciphering the Dynamic Evolution of the Tumor-Neural Interface
项目1:破译肿瘤-神经界面的动态演化
- 批准号:
10729275 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Defining mechanisms to promote antitumor immunity by modulating one-carbon metabolism
定义通过调节一碳代谢促进抗肿瘤免疫的机制
- 批准号:
10565099 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Dynamics of Cellular Brain Metabolism Using Mass Spectrometry Imaging
使用质谱成像研究细胞脑代谢动力学
- 批准号:
10556434 - 财政年份:2022
- 资助金额:
$ 44.99万 - 项目类别:
Real-Time Stereotactic Mass Spectrometry Tissue Analysis for Intraoperative Neuro
术中神经的实时立体定向质谱组织分析
- 批准号:
7981836 - 财政年份:2010
- 资助金额:
$ 44.99万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 44.99万 - 项目类别: