Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
基本信息
- 批准号:10751621
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-07 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAffectAmacrine CellsAnatomyAreaAutomobile DrivingAxonBrainBrain regionCategoriesCell DeathCell SurvivalCellsCessation of lifeChronicClosure by clampConeConfocal MicroscopyDataDetectionDiseaseElectrophysiology (science)FrequenciesFunctional disorderFutureGlaucomaGoalsHeterogeneityIn VitroInjuryInterneuronsInterventionIonsKineticsLearningLightMeasuresModelingMorphologyMusNerve CrushNeural RetinaOperative Surgical ProceduresOptic NerveOptic Nerve InjuriesOutcomeOutputPathway interactionsPatientsPharmacologyPhotoreceptorsPhysiologic pulsePhysiologicalPhysiologyPotassiumPredispositionProcessPropertyPublishingRampRetinaRetinal DiseasesRetinal Ganglion CellsRodRoleSignal TransductionSodiumStimulusSurgical ModelsSynapsesTechniquesTestingTherapeuticTimeTissuesTreatment EfficacyVisionVisualVisual impairmentWorkaxon growthaxon injuryaxon regenerationcell injurycell regenerationcell typeexperimental studyextracellularfunctional restorationganglion cellhuman diseaseimprovedin vivoinjuredinsightlucifer yellownerve injuryneurotransmissionnovelpatch clamppostsynapticprophylacticrational designresilienceresponseretinal axontranscriptomicsvisual processingvoltage
项目摘要
Project Summary/Abstract
Healthy vision requires the function of parallel cellular and synaptic pathways in the neural retina. Circuits
constructed from diverse cell types provide the anatomical and physiological basis for encoding diverse visual
scenes. Indeed, visual inputs to the mouse retina are converted to electrical signals by photoreceptors (1 rod, 2
cone types), integrated by interneurons (1 horizontal, ~15 bipolar, ~60 amacrine cell types), and relayed to the
brain by retinal ganglion cells (>40 types) whose axons form the optic nerve. In a surgical model of nerve
injury, called the optic nerve crush (ONC), the axons of retinal ganglion cells (RGCs) are damaged. In
response to ONC, 70-80% of RGCs die within two weeks. The death of RGCs is biased, however, and
depends on the RGC type. A group of resilient RGC types persists and survives for weeks following the crush,
whereas other susceptible RGC types die within a few days. A long-term goal of the ONC model is to rescue
injured RGCs and enable regrowth of axons to target brain regions and restore functional vision. The field has
identified transcriptomic and tissue-level mechanisms that promote RGC survival. Furthermore, RGC survival
and axon regeneration are enhanced by RGC electrical activity (e.g., action potential firing). However, there is
a major gap in our understanding of (1) how activity of different RGC types is affected following ONC; (2) how
changes in activity align with the resilient/susceptible category of RGC types; and (3) whether there are cellular
or synaptic mechanisms that are affected by ONC and prohibit the ability to enhance activity in certain RGC
types following injury. I will therefore utilize electrophysiological and confocal microscopy techniques to
directly address my hypothesis that dysfunction and reduced firing in RGCs post optic nerve crush
depends on the RGC type and reflects a combination of synaptic and cell-intrinsic mechanisms. I will
measure the anatomy and physiology of specific RGC types that are either resilient or susceptible to ONC and
determine the contributions of either synaptic or intrinsic mechanisms to RGC hypoactivity after ONC.
Understanding these mechanisms will generate insights into how naturally-occurring diseases that affect the
optic nerve, such as glaucoma, cause dysfunction and death of RGCs and could contribute to the design of
rational therapies.
项目摘要/摘要
健康视力需要平行细胞和突触途径在神经视网膜中的功能。电路
由各种细胞类型构建的提供了解剖学和生理基础,用于编码各种视觉
场景。实际上,通过光感受器(1杆,2)将视觉输入转换为电信号
锥类型),由中间神经元(1个水平,〜15双极,〜60 amacrine细胞类型),并中继到
轴突形成视神经的视网膜神经节细胞(> 40种类型)的大脑。在神经外科模型中
损伤被称为视神经挤压(ONC),视网膜神经节细胞(RGC)的轴突受损。在
对ONC的反应,RGC中有70-80%在两周内死亡。但是,RGC的死亡是有偏见的,并且
取决于RGC类型。一组弹性的RGC类型持续存在,并在暗恋后存活数周,
而其他易感RGC类型在几天内死亡。 ONC模型的长期目标是营救
损伤的RGC并使轴突能够重新生长,以靶向大脑区域并恢复功能视觉。该领域有
鉴定出促进RGC存活的转录组和组织级机制。此外,RGC生存
RGC的电活动(例如,动作电势射击)增强了轴突再生。但是,有
我们对(1)ONC之后不同RGC类型的活性如何影响(1)的主要差距; (2)如何
活动的变化与RGC类型的弹性/易感类别保持一致; (3)是否有细胞
或受ONC影响并禁止增强某些RGC活性的能力的突触机制
受伤后的类型。因此,我将利用电生理和共聚焦显微镜技术
直接解决了我的假设,即RGC中的功能障碍和降低发射后视神经挤压
取决于RGC类型,并反映了突触和细胞内部机制的组合。我会
测量特定RGC类型的解剖学和生理学,这些类型具有弹性或容易受到ONC的影响
确定突触或固有机制对ONC后RGC不良性的贡献。
了解这些机制将产生有关自然疾病的影响
视神经,例如青光眼,引起RGC的功能障碍和死亡,可能有助于设计
理性疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Eugene Zapadka其他文献
Thomas Eugene Zapadka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
- 批准号:32301097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
- 批准号:32371426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DUSP2介导自噬调控气管上皮细胞炎症在急性肺损伤中的机制研究
- 批准号:82360379
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超声射频信号神经回路策略模型定量肌肉脂肪化评估慢加急性肝衰竭预后
- 批准号:82302221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
- 批准号:
10750025 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: