SHF: Small: Energy and Computational Efficient Deep Generative AI Models via Emerging Devices, Circuits, and Architectures
SHF:小型:通过新兴设备、电路和架构实现能源和计算高效的深度生成人工智能模型
基本信息
- 批准号:2219753
- 负责人:
- 金额:$ 59.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep generative artificial intelligence (AI) models can learn to reproduce their inputs or the variational versions of their inputs. However, a critical challenge that needs to be addressed is their energy and computational cost. Foundational research in the design, verification, operation, and evaluation of deep generative AI hardware and software through novel approaches in emerging devices, circuits, and architectures is desirable. The energy and computational cost of AI has become a bottleneck for its applications in the real world. Research and education will be integrated through course and lab development. Under-represented and women students will be recruited for this project through the Society of Hispanic Professional Engineers, National Society of Black Engineers, and Society of Woman Engineers.This project targets the development of new generative AI models with simpler designs and architecture than are currently available. A novel path is explored for designing deep-learning hardware accelerators via efforts that span from devices and circuits to architectures and algorithms. The Cellular Neural Network-based realizations for key operations in convolution-based networks is studied, because it allows the bulk of the computation associated with a deep generative AI model to be performed in the analog domain. The development of mixed-signal circuits and architectures that lead to the best deep generative network designs by exploiting unique physics of emerging device technologies is investigated. The project is expected to generate orders of magnitude improvements in energy and delay for deep generative AI models, which will promote their applications and benefit the AI industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深层生成人工智能(AI)模型可以学会复制其输入或输入的变异版本。 但是,需要解决的关键挑战是它们的能量和计算成本。希望通过新兴设备,电路和体系结构中的新方法对设计,验证,操作和评估进行设计,验证,操作和评估。人工智能的能量和计算成本已成为其在现实世界中应用的瓶颈。研究和教育将通过课程和实验室发展整合。将通过西班牙裔专业工程师,国家黑人工程师和女工程师协会的社会为该项目招募人数不足和女学生。该项目的旨在开发具有比目前可用的新生成AI模型的新生成AI模型。探索了一条新颖的道路,可以通过从设备和电路到体系结构和算法的努力来设计深入学习的硬件加速器。研究了基于基于卷积的网络中的关键操作的基于细胞神经网络的实现,因为它允许在模拟域中执行与深层生成AI模型相关的大部分计算。 研究了通过利用新兴设备技术的独特物理学来开发的混合信号电路和体系结构,从而导致最佳的深层生成网络设计。预计该项目将在深层生成AI模型的能源和延迟方面提高数量级,这将促进其应用并受益于AI行业。该奖项反映了NSF的法定任务,并认为值得通过基金会的知识分子评估来支持支持,并具有更广泛的影响。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
5G Channel Forecasting and Power Allocation Based on LSTM Network and Cooperative Communication
基于LSTM网络和协作通信的5G信道预测和功率分配
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhangliang Chen, Qilian Liang
- 通讯作者:Zhangliang Chen, Qilian Liang
A statistical approach for neural network pruning with application to internet of things
- DOI:10.1186/s13638-023-02254-3
- 发表时间:2023-05
- 期刊:
- 影响因子:2.6
- 作者:Chengchen Mao;Q. Liang;C. Pan;Ioannis Schizas
- 通讯作者:Chengchen Mao;Q. Liang;C. Pan;Ioannis Schizas
Neural Network for UWB Radar Sensor Network-Based Sense-Through-Wall Human Detection
用于基于 UWB 雷达传感器网络的穿墙人体检测的神经网络
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dheeral Bhole, Qilian Liang
- 通讯作者:Dheeral Bhole, Qilian Liang
Towards Area Efficient Logic Circuit: Exploring Potential of Reconfigurable Gate by Generic Exact Synthesis
迈向面积高效的逻辑电路:通过通用精确综合探索可重构门的潜力
- DOI:10.1109/ojcs.2023.3247752
- 发表时间:2023
- 期刊:
- 影响因子:5.9
- 作者:Shang, Liuting;Naeemi, Azad;Pan, Chenyun
- 通讯作者:Pan, Chenyun
Graphene-Based Interconnect Exploration for Large SRAM Caches for Ultrascaled Technology Nodes
- DOI:10.1109/ted.2022.3225512
- 发表时间:2023-01
- 期刊:
- 影响因子:3.1
- 作者:Zhenlin Pei;M. Mayahinia;Hsiao-Hsuan Liu;M. Tahoori;F. Catthoor;Z. Tokei;C. Pan
- 通讯作者:Zhenlin Pei;M. Mayahinia;Hsiao-Hsuan Liu;M. Tahoori;F. Catthoor;Z. Tokei;C. Pan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qilian Liang其他文献
Nested sparse sampling and co-prime sampling in sense-through-foliage target detection
叶子目标检测中的嵌套稀疏采样和互质采样
- DOI:
10.1016/j.phycom.2014.02.001 - 发表时间:
2014-12 - 期刊:
- 影响因子:2.2
- 作者:
Na Wu;Qilian Liang - 通讯作者:
Qilian Liang
Spectrum and Energy Efficient Wireless Communications
频谱和节能无线通信
- DOI:
10.1109/mwc.2020.9241878 - 发表时间:
2020-10 - 期刊:
- 影响因子:12.9
- 作者:
Jinhwan Koh;Qilian Liang;Tariq S. Durrani;Xin Wang;Qiong Wu - 通讯作者:
Qiong Wu
Spam detection for Youtube video comments using machine learning approaches
使用机器学习方法对 YouTube 视频评论进行垃圾邮件检测
- DOI:
10.1016/j.mlwa.2024.100550 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew S. Xiao;Qilian Liang - 通讯作者:
Qilian Liang
Exciting-Inhibition Network for Person Reidentification in Internet of Things
物联网中人员重新识别的兴奋抑制网络
- DOI:
10.1109/jiot.2020.3036821 - 发表时间:
2021-10 - 期刊:
- 影响因子:10.6
- 作者:
Meixia Fu;Qiang Liu;Qilian Liang;Xiaoyun Tong;Songlin Sun - 通讯作者:
Songlin Sun
Representation Learning and Nature Encoded Fusion for Heterogeneous Sensor Networks
异构传感器网络的表示学习和自然编码融合
- DOI:
10.1109/access.2019.2907256 - 发表时间:
2019-03 - 期刊:
- 影响因子:3.9
- 作者:
Longwei Wang;Qilian Liang - 通讯作者:
Qilian Liang
Qilian Liang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qilian Liang', 18)}}的其他基金
Collaborative Research: Spectrum Efficient Waveform Design with Application to Wireless Networks
合作研究:频谱效率波形设计及其在无线网络中的应用
- 批准号:
1247848 - 财政年份:2012
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
NeTS: Small: Smart Grid Wireless Networks: Capacity and Achievability
NeTS:小型:智能电网无线网络:容量和可实现性
- 批准号:
1116749 - 财政年份:2011
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Gulf of Mexico Oil Spill Impact on Beach Soil: Radar and Radar Sensor Network-Based Approaches
RAPID:合作研究:墨西哥湾漏油对海滩土壤的影响:雷达和基于雷达传感器网络的方法
- 批准号:
1050618 - 财政年份:2010
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
NeTS: Medium: Collaborative Research: Opportunistic and Compressive Sensing in Wireless Sensor Networks
NeTS:媒介:协作研究:无线传感器网络中的机会和压缩感知
- 批准号:
0964713 - 财政年份:2010
- 资助金额:
$ 59.92万 - 项目类别:
Continuing Grant
EAGER: Heterogeneous Sensor Network Design and Information Integration
EAGER:异构传感器网络设计和信息集成
- 批准号:
0956438 - 财政年份:2009
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
Collaborative Research: NEDG: Throughput Optimization in Wireless Mesh Networks
合作研究:NEDG:无线网状网络的吞吐量优化
- 批准号:
0831902 - 财政年份:2008
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
Collaborative Research: NOSS: Autonomous Mobile Underwater SEnsor networks (AMUSE): Design and Applications
合作研究:NOSS:自主移动水下传感器网络(AMUSE):设计和应用
- 批准号:
0721515 - 财政年份:2007
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
相似国自然基金
靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
- 批准号:32370966
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
- 批准号:82304478
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
- 批准号:82371712
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
- 批准号:32372613
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2341183 - 财政年份:2023
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326894 - 财政年份:2023
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
SHF: Small: Circuit Support for Maintaining the Continuous-power Abstraction in Energy Harvesting Systems
SHF:小型:用于维持能量收集系统中的连续功率抽象的电路支持
- 批准号:
2240744 - 财政年份:2023
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Enabling Caches and GPUs for Energy Harvesting Systems
合作研究:SHF:小型:为能量收集系统启用缓存和 GPU
- 批准号:
2153749 - 财政年份:2022
- 资助金额:
$ 59.92万 - 项目类别:
Standard Grant