Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge

合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络

基本信息

  • 批准号:
    2326894
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Deep Neural Networks (DNNs) have recently enabled revolutionary advances in a wide variety of tasks, however these deep networks demand large amounts of memory and computation resources. Such demands can be highly difficult (or even impractical) for systems on the edge. Although DNNs are very accurate, the energy consumed by DNNs is orders of magnitude higher than biological neural activities for similar tasks. It is important to reduce the computational and energy demands of machine learning hardware so that inferencing on the edge can become a low-cost, low-energy task. Weightless Neural Networks (WNNs) represent a distinct class of neural models which derive inspiration from the processing of input signals by the dendritic trees of biological neurons. WNNs do not use weights or multiply-add operations to determine their responses. Instead, they rely on value lookups implemented using look-up tables. This project explores small models that are more energy efficient compared to multiplication-and-addition-based deep learning models. WNNs are very promising from the perspective of energy-efficiency, and low latency, and our effort is directed at enabling a myriad of ultra-low energy edge applications otherwise impossible. This project explores low-energy machine learning hardware which combine the benefits of traditional DNNs and the computation-less weightless neural networks. Techniques used include (1) utilizing multi-layer networks and hierarchical networks to create novel weightless neural network architectures, (2) devising novel training algorithms for WNNs utilizing multi-shot training with feedback (3) exploring quasi-weightless neural networks using emerging novel memory technologies, and (4) designing systems for energy-efficient edge intelligence. The collaborative project between the University of Texas and Stanford University innovates across multiple layers of the system stack, including architecture and circuit layers. The collaborative activity between the University of Texas and Stanford involves many underrepresented communities from a STEM perspective, including minority and women, undergrads, and first-generation college students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNNS)最近在各种任务中实现了革命性的进步,但是这些深层网络需要大量的内存和计算资源。对于边缘的系统而言,这种需求可能非常困难(甚至是不切实际)。尽管DNN非常准确,但DNN消耗的能量的数量级比生物神经活动高的数量级。 重要的是减少机器学习硬件的计算和能源需求,以便在边缘上推断可以成为一项低成本,低能的任务。失重的神经网络(WNN)代表了一类独特的神经模型,这些神经模型从生物神经元的树突树的处理中得出了灵感。 WNN不使用权重或乘以ADD操作来确定其响应。相反,他们依靠使用查找表实现的价值查找。 该项目探讨了与基于乘法和基础深度学习模型相比,这些模型更节能。从能源效率的角度来看,WNN非常有前途,并且潜伏期低,我们的努力旨在使无数的超低能量边缘应用否则不可能。该项目探索了低能机器学习硬件,该硬件结合了传统DNN的好处和无计算的失重神经网络。 所使用的技术包括(1)利用多层网络和分层网络来创建新型的失重神经网络体系结构,(2)设计新型培训算法,用于WNNS,利用反馈(3)探索Quasi-Weightss weightnextless神经网络,使用新颖的新型记忆技术和(4)设计能源(4)设计效果。德克萨斯大学和斯坦福大学之间的合作项目跨系统堆栈的多层创新,包括建筑和电路层。得克萨斯大学和斯坦福大学之间的合作活动涉及许多人代表性不足的社区,包括少数群体和妇女,本科生和第一代大学生。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和宽广的影响来评估的支持,并被认为是值得的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lizy John其他文献

Lizy John的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lizy John', 18)}}的其他基金

EAGER: Improving Reproducibility of Computing Research using Proxy Workloads
EAGER:使用代理工作负载提高计算研究的可重复性
  • 批准号:
    1745813
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
IISWC 2012 Student Travel Grants
IISWC 2012 学生旅费补助
  • 批准号:
    1261723
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
IISWC 2011 Student Travel Grants
IISWC 2011 学生旅费补助
  • 批准号:
    1202396
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SHF: Small: Workload Characterization and Benchmark Synthesis for Emerging Computing Systems
SHF:小型:新兴计算系统的工作负载表征和基准综合
  • 批准号:
    1117895
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CRI: CRD Collaborative Research: Archer - Seeding a Community-based Computing Infrastructure for Computer Architecture Research and Education
CRI:CRD 协作研究:Archer - 为计算机体系结构研究和教育提供基于社区的计算基础设施
  • 批准号:
    0750860
  • 财政年份:
    2008
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Simplifying Computer Performance Evaluation using Workload Characterization
使用工作负载表征简化计算机性能评估
  • 批准号:
    0702694
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Statistical Techniques for Computer Performance Evaluation
计算机性能评估的统计技术
  • 批准号:
    0429806
  • 财政年份:
    2004
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
IT/SY(CISE): Designing Microprocessors and Computer Systems for Emerging Workloads
IT/SY(CISE):为新兴工作负载设计微处理器和计算机系统
  • 批准号:
    0113105
  • 财政年份:
    2001
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Experimental Software Systems: Performance Impact of Contemporary Programming Paradigms and Workloads
实验软件系统:当代编程范式和工作负载的性能影响
  • 批准号:
    9807112
  • 财政年份:
    1998
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Improving the Access-Execute Balance in High Performance Processors
职业:改善高性能处理器的访问执行平衡
  • 批准号:
    9624378
  • 财政年份:
    1996
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了