Collaborative Research: SHF: Small: Enabling Caches and GPUs for Energy Harvesting Systems
合作研究:SHF:小型:为能量收集系统启用缓存和 GPU
基本信息
- 批准号:2153749
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Energy-harvesting systems collect energy from variant ambient sources such as solar power, thermal energy, and radio-frequency radiation. Due to unreliable energy sources, energy-harvesting systems suffer from frequent power failures. Hence, energy-harvesting systems should be able to save the current program states before a power failure, restore the consistent program states when the power comes back, and seamlessly resume program execution as if nothing happened. However, maintaining crash-consistent states across power cycles is challenging. As a result, the current generation of energy-harvesting systems has been designed with simple hardware configurations such as a single central processing unit (CPU) without a cache, delivering limited computing capabilities. Going forward, in the new Internet of Things era, ever-increasing demand for substantially more high-performance energy-harvesting systems capable of supporting emerging artificial-intelligence and machine-learning applications are expected. This project proposes new software and hardware co-design solutions that allow energy-harvesting systems to leverage caches and graphic processing units (GPUs) for high performance and energy efficiency. The project is expected to serve as the foundation to unlock next-generation Internet of Things services, based on battery-less energy-harvesting systems. The project also aims to incorporate research findings in undergraduate teaching and offer K-12 outreach programs for female students to promote more equitable outcomes for women in computer science.The objective of this project is to enable caches and GPUs in energy-harvesting systems and to design next-generation energy harvesting systems with high performance and energy efficiency. To this end, the project proposes compiler- and hardware-based solutions in three research thrusts. The project will explore a compiler-based solution that allows existing energy-harvesting systems to use a traditional data cache without hardware modification. The project will explore a new research direction that avoids expensive logging at run time, yet instead recovers potentially un-persisted stores at reboot time. To achieve better performance, the project aims to design a new hardware-based cache for energy-harvesting systems, which combines the benefits of a write-back cache and a write-through cache without their respective downsides. The project will design the first energy-harvesting GPU system that introduces a new checkpointing solution for GPU registers and a lightweight persistence solution for GPU shared memory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
能量收获系统从太阳能,热能和射频辐射等变异的环境来源收集能量。由于能源不可靠,能量收获的系统遭受了频繁的功率故障。因此,能源收获系统应该能够在电源故障之前保存当前的程序状态,恢复电源返回时一致的程序指示,并无缝恢复程序执行,好像什么都没发生。但是,在电源周期中保持碰撞一致的状态具有挑战性。结果,当前一代的能量收获系统是通过简单的硬件配置设计的,例如没有缓存的单个中央处理单元(CPU),提供了有限的计算功能。展望未来,在新事物互联网时代,预计对能够支持新兴的人工智能和机器学习应用程序的更高性能的能源收获系统的需求不断增加。该项目提出了新的软件和硬件共同设计解决方案,允许能源收获系统利用缓存和图形处理单元(GPU)提高高性能和能源效率。预计该项目将作为基础,以基于无电池的能源收获系统来解锁下一代物联网服务。该项目还旨在将研究结果纳入本科教学中,并为女学生提供K-12外展计划,以促进计算机科学中女性更公平的成果。该项目的目的是在能源收获系统中启用缓存和GPU,并设计具有高性能和能源效率的下一代能源收获系统。为此,该项目提出了三个研究推力的基于编译器和基于硬件的解决方案。该项目将探索基于编译器的解决方案,该解决方案允许现有的能源收获系统使用传统的数据缓存而无需修改硬件。该项目将探索一个新的研究方向,该方向避免了在运行时昂贵的记录,但在重新启动时会恢复潜在的未经使用的商店。为了取得更好的性能,该项目旨在为能量收获系统设计一个新的基于硬件的高速缓存,该缓存结合了写下后背缓存的好处和不相同的缺点的写入缓存。该项目将设计第一个能源收获的GPU系统,该系统为GPU寄存器引入了新的检查点解决方案,并针对GPU共享内存提供了轻巧的持久解决方案。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查审查标准来通过评估来通过评估来提供支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Changhee Jung其他文献
Low-cost soft error resilience with unified data verification and fine-grained recovery for acoustic sensor based detection
低成本的软错误恢复能力,具有统一的数据验证和细粒度恢复,用于基于声学传感器的检测
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qingrui Liu;Changhee Jung;Dongyoon Lee;Devesh Tiwari - 通讯作者:
Devesh Tiwari
Adaptive execution techniques of parallel programs for multiprocessors
多处理器并行程序的自适应执行技术
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Jaejin Lee;Jungho Park;Honggyu Kim;Changhee Jung;Daeseob Lim;Sang - 通讯作者:
Sang
CommAnalyzer: Automated Estimation of Communication Cost on HPC Clusters Using Sequential Code
CommAnalyzer:使用顺序代码自动估计 HPC 集群上的通信成本
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
A. Helal;Changhee Jung;Wu;Y. Hanafy - 通讯作者:
Y. Hanafy
ProRace
职业竞赛
- DOI:
10.1145/3093336.3037708 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Tong Zhang;Changhee Jung;Dongyoon Lee - 通讯作者:
Dongyoon Lee
Clover: Compiler Directed Lightweight Soft Error Resilience
Clover:编译器导向的轻量级软错误恢复能力
- DOI:
10.1145/2670529.2754959 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Qingrui Liu;Changhee Jung;Dongyoon Lee;Devesh Tiwari - 通讯作者:
Devesh Tiwari
Changhee Jung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Changhee Jung', 18)}}的其他基金
Collaborative Research: CSR: Small: Caphammer: A New Security Exploit in Energy Harvesting Systems and its Countermeasures
合作研究:CSR:小型:Caphammer:能量收集系统的新安全漏洞及其对策
- 批准号:
2314681 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Rethinking HPC Resilience in the Exascale Era
职业:重新思考百亿亿次时代的 HPC 弹性
- 批准号:
2001124 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Rethinking HPC Resilience in the Exascale Era
职业:重新思考百亿亿次时代的 HPC 弹性
- 批准号:
1750503 - 财政年份:2018
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
SHF: Small: Compiler and Architectural Techniques for Soft Error Resilience
SHF:小型:软错误恢复能力的编译器和架构技术
- 批准号:
1527463 - 财政年份:2015
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant