CAREER: Singular and Global Solutions to Nonlinear Elliptic Equations
职业:非线性椭圆方程的奇异和全局解
基本信息
- 批准号:2143668
- 负责人:
- 金额:$ 50.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Physical laws and curvature conditions are written in the language of partial differential equations (PDE). Solutions to these equations are often singular (non-smooth), which limits the reliability of numerical approximations of solutions and presents significant challenges in their mathematical analysis. In this project, the PI will investigate the qualitative behavior of solutions to nonlinear elliptic PDE that play a central role in physics and geometry, with particular emphasis on the construction of singular and global examples. The project includes an educational component that involves researchers at many career stages through (a) the supervision of postdoctoral researchers and Ph.D. students; (b) the organization of a quarterly weekend conference to train students in scientific communication; (c) the organization of a winter workshop aimed at graduate and advanced undergraduate students, with week-long short courses by experts on research topics related to this project; and (d) the writing of a book based on advanced topics courses given by the PI, with significant input from the students who attended these courses.At a technical level, the main goals of the project are to (1) construct new examples of nonlinear entire solutions to variants of the minimal surface equation, and prove related Bernstein-type theorems; (2) investigate singular structures that appear in solutions to fully nonlinear elliptic equations such as the Monge-Ampere and quadratic Hessian equations, motivated by applications to complex geometry, optimal transport, and meteorology; and (3) construct new examples of singular minimizers of classical variational integrals in low dimensions, and discover structure conditions that prevent the formation of singularities. The equations under investigation share features (degenerate ellipticity and the existence of singular solutions) that limit the usefulness of standard techniques. To address these challenges, the PI will pursue new approaches that unite several areas of mathematics, and build sophisticated technical tools to carry out these approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物理定律和曲率条件是用偏微分方程 (PDE) 语言编写的。这些方程的解通常是奇异的(非光滑的),这限制了解的数值近似的可靠性,并在数学分析中提出了重大挑战。在这个项目中,PI 将研究在物理学和几何学中发挥核心作用的非线性椭圆偏微分方程解的定性行为,特别强调奇异和全局示例的构造。该项目包括一个教育部分,通过(a)博士后研究人员和博士的监督,涉及许多职业阶段的研究人员。学生; (b) 每季度组织一次周末会议,对学生进行科学传播方面的培训; (c) 为研究生和高年级本科生举办冬季讲习班,由专家就与该项目相关的研究主题举办为期一周的短期课程; (d) 根据 PI 提供的高级主题课程编写一本书,并听取参加这些课程的学生的重要意见。在技术层面上,该项目的主要目标是 (1) 构建新的示例最小曲面方程变体的非线性整体解,并证明相关的伯恩斯坦型定理; (2) 研究完全非线性椭圆方程解中出现的奇异结构,例如 Monge-Ampere 和二次 Hessian 方程,其动机是在复杂几何、最优传输和气象学中的应用; (3)构造低维经典变分积分的奇异极小化的新例子,并发现阻止奇点形成的结构条件。所研究的方程具有限制标准技术实用性的共同特征(简并椭圆性和奇异解的存在)。为了应对这些挑战,PI 将寻求将多个数学领域结合起来的新方法,并构建复杂的技术工具来实施这些方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和能力进行评估,被认为值得支持。更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Homogeneous functions with nowhere-vanishing Hessian determinant
具有不消失的 Hessian 行列式的齐次函数
- DOI:10.4171/aihpc/78
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Mooney; Connor
- 通讯作者:Connor
Singular structures in solutions to the Monge-Ampère equation with point masses
具有点质量的 Monge-Ampère 方程解中的奇异结构
- DOI:10.3934/mine.2023083
- 发表时间:2023-01
- 期刊:
- 影响因子:1
- 作者:Mooney, Connor;Rakshit, Arghya
- 通讯作者:Rakshit, Arghya
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connor Mooney其他文献
Non $C^1$ solutions to the special Lagrangian equation
特殊拉格朗日方程的非 $C^1$ 解
- DOI:
10.1016/j.jep.2006.07.021 - 发表时间:
2023-03-24 - 期刊:
- 影响因子:5.4
- 作者:
Connor Mooney;O. Savin - 通讯作者:
O. Savin
An Introduction to Curve-Shortening and the Ricci Flow
曲线缩短和 Ricci 流简介
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Connor Mooney - 通讯作者:
Connor Mooney
Gradient estimates for the Lagrangian mean curvature equation with critical and supercritical phase
具有临界和超临界相的拉格朗日平均曲率方程的梯度估计
- DOI:
10.1142/s0219720008003539 - 发表时间:
2022-05-26 - 期刊:
- 影响因子:0
- 作者:
Arunima Bhattacharya;Connor Mooney;R. Shankar - 通讯作者:
R. Shankar
Minimizers of convex functionals with small degeneracy set
具有小简并集的凸泛函的极小化
- DOI:
10.1007/s00526-020-1723-9 - 发表时间:
2019-03-07 - 期刊:
- 影响因子:2.1
- 作者:
Connor Mooney - 通讯作者:
Connor Mooney
VERITAS Discovery of Very High Energy Gamma-Ray Emission from S3 1227+25 and Multiwavelength Observations
VERITAS 发现 S3 1227 25 的极高能伽马射线发射和多波长观测
- DOI:
10.3847/1538-4357/acd2d0 - 发表时间:
2023-05-04 - 期刊:
- 影响因子:0
- 作者:
A. Acharyya;C. Adams;A. Archer;P. Bangale;W. Benbow;A. Brill;J. Christiansen;A. Chromey;M. Err;o;o;A. Falcone;Q. Feng;J. Finley;G. Foote;L. Fortson;A. Furniss;G. Gallagher;W. Hanlon;D. Hanna;O. Hervet;C. Hinrichs;J. Hoang;J. Holder;Weidong Jin;Madalyn Johnson;P. Kaaret;M. Kertzman;D. Kieda;T. Kleiner;N. Korzoun;F. Krennrich;Mark Lang;Matt Lundy;G. Maier;Conor McGrath;M. Millard;J. Millis;Connor Mooney;P. Moriarty;R. Mukherjee;S. O’Brien;R. Ong;M. Pohl;E. Pueschel;J. Quinn;K. Ragan;Paul Reynolds;D. Ribeiro;E. Roache;I. Sadeh;A. Sadun;L. Saha;M. Sant;er;er;G. Sembroski;R. Shang;M. Splettstoesser;A. Talluri;J. Tucci;V. Vassiliev;David Williams;S. Wong;T. Hovatta;S. Jorstad;S. Kiehlmann;A. Lahteenmaki;I. Liodakis;A. Marscher;W. Max;A. Readhead;R. Reeves;Paul S. Smith;M. Tornikoski - 通讯作者:
M. Tornikoski
Connor Mooney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Connor Mooney', 18)}}的其他基金
Regularity vs. Singularity for Elliptic and Parabolic Systems
椭圆和抛物线系统的正则性与奇异性
- 批准号:
1854788 - 财政年份:2019
- 资助金额:
$ 50.06万 - 项目类别:
Standard Grant
相似国自然基金
对偶Auslander转置及其诱导模类的同调性质研究
- 批准号:11501144
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
涡旋光束二阶非线性效应在简单数学运算中的应用研究
- 批准号:61307001
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
流体湍流运动的相关数学分析
- 批准号:10971174
- 批准年份:2009
- 资助金额:25.0 万元
- 项目类别:面上项目
变分不等式的一些简单数值方法与网络平衡问题
- 批准号:10501024
- 批准年份:2005
- 资助金额:15.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
- 批准号:
19H01794 - 财政年份:2019
- 资助金额:
$ 50.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Global Existence for a Singular General Activator-Inhibitor Model
单一通用激活剂-抑制剂模型的全球存在
- 批准号:
496631-2016 - 财政年份:2016
- 资助金额:
$ 50.06万 - 项目类别:
University Undergraduate Student Research Awards
Global Existence for a Singular General Activator-Inhibitor Model
单一通用激活剂-抑制剂模型的全球存在
- 批准号:
496631-2016 - 财政年份:2016
- 资助金额:
$ 50.06万 - 项目类别:
University Undergraduate Student Research Awards
Study of structures of singular phenomena via complex global analysis
通过复杂的全局分析研究奇异现象的结构
- 批准号:
23540207 - 财政年份:2011
- 资助金额:
$ 50.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global Theory of Singularities from the Viewpoint of Homotopy Theory
同伦论视角下的全局奇点理论
- 批准号:
16340018 - 财政年份:2004
- 资助金额:
$ 50.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)