CDS&E: Machine-Learning-Driven Methods for Multiobjective and Inverse Design of van-der-Waals-Material-Based Devices

CDS

基本信息

  • 批准号:
    2203625
  • 负责人:
  • 金额:
    $ 33.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-15 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Advanced semiconductor device technologies play a critical role in computing, data storage, artificial intelligence (AI), and quantum technologies. Two-dimensional materials and their heterojunctions form a promising material and structure platform to develop future semiconductor devices. Despite promising technological potentials, their technological adoption has been hindered by several major challenges including predicting device properties accurately and assessing device performance systematically. In this project, computer-aided simulation and design capabilities will be developed to address these challenges by combining AI methods with advanced device simulation. The development of AI-guided computer simulation methods will facilitate fast and accurate prediction of device properties, and enable automatic and efficient design of these nanoscale devices. This project will result in an integrated testbed for research and education on applications of AI methods in nanoelectronics. The project will engage and train high school, undergraduate, and graduate students in the fields of semiconductor and AI technologies. The modeling tools developed in this project will be disseminated as an open-source online resource.The goals of the project are to develop physics-informed machine-learning (ML) models and device design methods for efficient and automatic simulation and design of van der Waals (wdW) semiconductor devices. The proposed research activities include: (1) develop physics-informed ML models in an embedded or hybrid manner for quantum transport device simulations, with consideration of improving efficiency, respecting device physics, and reducing the amount of training data required; (2) develop a multi-objective optimization method to systematically assess and comprehensively optimize vdW-material and vdW-heterojunction devices, by simultaneously considering multiple technologically important device performance metrics; (3) develop an efficient gradient-based inverse design method that is integrated with quantum transport device simulations, by applying auto-differentiation methods over the quantum transport equation and its solution algorithms; (4) test and apply the methods proposed to simulate and design a set of vdW-material and vdW-heterojunction devices, which have shown promising logic and memory device performance. The project develops an essential knowledge base for harnessing rapidly developing machine learning methods and theory to advance the modeling, simulation, and design capabilities of nanoelectronic devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高级半导体设备技术在计算,数据存储,人工智能(AI)和量子技术中起着至关重要的作用。二维材料及其异质结构构成了开发未来半导体设备的有前途的材料和结构平台。尽管有希望的技术潜力,但它们的技术采用受到了一些主要挑战的阻碍,包括准确预测设备的性能并系统地评估设备性能。在此项目中,将开发计算机辅助的模拟和设计功能,以通过将AI方法与高级设备仿真相结合,以应对这些挑战。 AI引导的计算机仿真方法的开发将有助于快速准确地预测设备属性,并启用这些纳米级设备的自动和高效设计。该项目将为AI方法在纳米电子学中的应用中进行研究和教育的集成测试床。该项目将在半导体和AI技术领域互动和培训高中,本科和研究生。该项目中开发的建模工具将作为开源在线资源传播。该项目的目标是开发物理知识的机器学习(ML)模型和设备设计方法,以进行有效,自动模拟和设计范德瓦尔斯(WDW)半导体设备。拟议的研究活动包括:(1)以嵌入式或混合方式开发物理知识的ML模型,以进行量子运输设备模拟,并考虑提高效率,尊重设备物理学并减少所需的培训数据量; (2)开发一种多目标优化方法,通过同时考虑多个技术上重要的设备性能指标来系统地评估并全面地评估和全面地优化VDW - 材料和VDW - 重合结构设备; (3)开发一种有效的基于梯度的逆设计方法,该方法与量子传输设备模拟集成在一起,通过在量子传输方程及其溶液算法上应用自动分化方法; (4)测试并应用提出的方法来模拟和设计一组VDW - 材料和VDW - 直接结构设备,这些设备显示出了有希望的逻辑和内存设备性能。该项目开发了一个基本的知识库,用于利用快速开发机器学习方法和理论,以推动纳米电子设备的建模,模拟和设计能力。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Van der Waals Heterostructure Engineering for Ultralow-Resistance Contact in 2D Semiconductor P-Type Transistors
  • DOI:
    10.1007/s11664-024-10920-5
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Ning Yang;Ting-Hao Hsu;Hung-Yu Chen;Jian Zhao;Hongming Zhang;Han Wang;Jing Guo
  • 通讯作者:
    Ning Yang;Ting-Hao Hsu;Hung-Yu Chen;Jian Zhao;Hongming Zhang;Han Wang;Jing Guo
Phase Transition of MoTe 2 Controlled in van der Waals Heterostructure Nanoelectromechanical Systems
范德华异质结构纳米机电系统中 MoTe 2 相变的控制
  • DOI:
    10.1002/smll.202205327
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Ye, Fan;Islam, Arnob;Wang, Yanan;Guo, Jing;Feng, Philip X. ‐L.
  • 通讯作者:
    Feng, Philip X. ‐L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Guo其他文献

Preparation and Adsorption Properties of Magnetic Composite Microspheres Containing Metal–Organic Double Network Structure
金属有机双网络结构磁性复合微球的制备及其吸附性能
Hydrogen storage performance and phase transformations in as-cast and extruded Mg-Ni-Gd-Y-Zn-Cu alloys
铸态和挤压 Mg-Ni-Gd-Y-Zn-Cu 合金的储氢性能和相变
  • DOI:
    10.1016/j.jmst.2022.12.015
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hu Yao;Guang Zeng;Xin F. Tan;Qinfen Gu;Kazuhiro Nogita;Jing Guo;Qian Li
  • 通讯作者:
    Qian Li
A Flexible Concept for Designing Multiaxis Force/Torque Sensors Using Force Closure Theorem
使用力闭合定理设计多轴力/扭矩传感器的灵活概念
Green glycerol tailored composite membranes with boosted nanofiltration performance
具有增强纳滤性能的绿色甘油定制复合膜
  • DOI:
    10.1016/j.memsci.2022.121064
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Haoze Zeng;Jing Guo;Yanqiu Zhang;Dingyu Xing;Fan Yang;Junhui Huang;Sichao Huang;Lu Shao
  • 通讯作者:
    Lu Shao
Growth behavior and kinetics of austenite grain in low-carbon high-strength steel with copper
含铜低碳高强钢奥氏体晶粒长大行为及动力学
  • DOI:
    10.1088/2053-1591/ac2014
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Fanyun Meng;Zhen Xu;Kuijun Fu;Zhongjun Wang;Jing Guo;Jiaji Wang;Ming Zhao
  • 通讯作者:
    Ming Zhao

Jing Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Guo', 18)}}的其他基金

FET: Small: Modeling, Simulation, and Design for Robustness and Performance in Semiconductor-Based Quantum Computing
FET:小型:基于半导体的量子计算的鲁棒性和性能的建模、仿真和设计
  • 批准号:
    2007200
  • 财政年份:
    2020
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
CDS&E: Fast Computational Methods for Quantum Simulation of 2D Spintronic and Electronic Devices
CDS
  • 批准号:
    1904580
  • 财政年份:
    2019
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
  • 批准号:
    1809770
  • 财政年份:
    2018
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: GOALI: Multiscale CAD Framework of Atomically Thin Transistors for Flexible Electronic System Applications
SHF:小型:协作研究:GOALI:用于灵活电子系统应用的原子薄晶体管的多尺度 CAD 框架
  • 批准号:
    1618762
  • 财政年份:
    2016
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
CAREER: QMHP: A Multiphenomena Simulator toward New Functionalities of All-Graphene Devices
职业:QMHP:实现全石墨烯器件新功能的多现象模拟器
  • 批准号:
    0846563
  • 财政年份:
    2009
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Modeling, Simulation, and Design for Performance and Reliability in Carbon-based Electronics
SHF:小型:协作研究:碳基电子产品性能和可靠性的建模、仿真和设计
  • 批准号:
    0916683
  • 财政年份:
    2009
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于偏序邻域的多粒度图机器学习与决策
  • 批准号:
    62366008
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于机器学习方法的土壤多孔介质中EPFRs环境行为与生态毒性研究
  • 批准号:
    42377385
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习的大学生自杀风险识别研究
  • 批准号:
    32300917
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向多机器人视觉感知的自主学习机制
  • 批准号:
    62373009
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E: Robust Symmetry-Preserving Machine Learning: Theory and Application
CDS
  • 批准号:
    2244976
  • 财政年份:
    2023
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Continuing Grant
CDS&E: Machine learning enabled modelling of dynamic nanoparticle catalysts
CDS
  • 批准号:
    2152767
  • 财政年份:
    2022
  • 资助金额:
    $ 33.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了