CDS&E: Thin Film Analysis by XPS: Quantitative Modeling of Sputtering and Depth Profile Data, Machine Learning Classifiers, and Novel Applications
CDS
基本信息
- 批准号:2203841
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With support from the Chemical Measurement and Imaging program of the Chemistry Division, Lev Gelb and Amy Walker of the University of Texas at Dallas will improve methods for interpreting x-ray photoelectron spectroscopy (XPS) sputter depth profiling data sets and spectra. In XPS, x-rays eject electrons from a sample, which identify the elements present near the sample surface. In depth-profiling, the sample is simultaneously eroded away by blasting (“sputtering”) the sample with a beam of ions, so that the composition at varying depths is also determined. Unfortunately, the x-rays and sputter beam cause unwanted chemical reactions, roughening, interlayer mixing, and other effects which distort the measured composition profiles. By accounting for these effects, this Project improves the quality and reliability of such measurements. Software developed in this project will be freely distributed and promoted as a community resource. XPS is widely used in materials science, nanoscience, semiconductor research, biotechnology and other fields, so improving the performance of this technique will be of significant long-term benefit to society at large.The Project will focus on model-based data analysis. A realistic simulation of the sputter process is used to describe how the sample changes during the experiment, from which XPS spectra are calculated and compared with the collected data. The simulation parameters are then adjusted to give optimal agreement and thus the best estimates of sample properties and sputter rates. These simulations also be leveraged to develop machine-learning data analysis tools. Real XPS data are time-consuming to measure, so assembling a training set of thousands (or more) of such experiments is not practical. Instead, simulations will create training sets of millions of spectra from hypothetical samples. Deep neural network classifiers will then be trained to provide very rapid assignments of sample structure and composition. Finally, these techniques will be used in the analysis of a series of complex samples of both technological and historical interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学分部的化学测量和成像计划的支持下,达拉斯大学德克萨斯大学的Lev Gelb和Amy Walker将改善解释X射线光电光谱(XPS)溅射深度分析数据集和光谱的方法。在XPS中,来自样品的X射线喷射电子,这些电子识别出样品表面附近的元素。在深度填充的过程中,将样品简单地被带有离子束的样品爆破(“溅射”),以便还确定在不同深度处的组成。不幸的是,X射线和溅射光束会导致不需要的化学反应,粗糙,层间混合以及其他扭曲所测量曲线的影响。通过考虑这些影响,该项目提高了此类测量的质量和可靠性。该项目开发的软件将被自由分发并作为社区资源进行促进。 XPS广泛用于材料科学,纳米科学,半导体研究,生物技术和其他领域,因此改善该技术的性能将对整个社会具有重大的长期利益。该项目将重点介绍基于模型的数据分析。对溅射过程的现实模拟用于描述实验过程中样品的变化,从中计算XPS光谱并将其与收集的数据进行比较。然后调整模拟参数以提供最佳的一致性,从而对样本属性和溅射速率进行最佳估计。这些模拟还可以利用以开发机器学习数据分析工具。真正的XPS数据是耗时的,因此组装成千上万(或更多)此类实验的训练集是不切实际的。取而代之的是,模拟将从假设样本中创建数百万个光谱的训练集。然后,将对深度神经网络分类器进行培训,以提供样品结构和组成的非常快速的分配。最后,这些技术将用于分析技术和历史兴趣的一系列复杂样本。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估,被认为是珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lev Gelb其他文献
Lev Gelb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lev Gelb', 18)}}的其他基金
CDS&E: Resolving Nonlinearity in Thin Film Chemical Analysis: Roughening, Matrix Effects and Chemical Damage
CDS
- 批准号:
1709667 - 财政年份:2017
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: Cyberinfrastructure for Phase-Space Mapping - Free Energies, Phase Equilibria and Transition Paths
合作研究:相空间映射的网络基础设施 - 自由能、相平衡和过渡路径
- 批准号:
1106947 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
First-principles Monte Carlo simulations of fluid phase equilibria at extreme conditions
极端条件下流体相平衡的第一原理蒙特卡罗模拟
- 批准号:
1106948 - 财政年份:2010
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
First-principles Monte Carlo simulations of fluid phase equilibria at extreme conditions
极端条件下流体相平衡的第一原理蒙特卡罗模拟
- 批准号:
0718861 - 财政年份:2007
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Collaborative Research: Cyberinfrastructure for Phase-Space Mapping - Free Energies, Phase Equilibria and Transition Paths
合作研究:相空间映射的网络基础设施 - 自由能、相平衡和过渡路径
- 批准号:
0626008 - 财政年份:2006
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
CAREER: Multi-Scale Modeling of Sol-Gel Materials
职业:溶胶-凝胶材料的多尺度建模
- 批准号:
0241005 - 财政年份:2002
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
CAREER: Multi-Scale Modeling of Sol-Gel Materials
职业:溶胶-凝胶材料的多尺度建模
- 批准号:
0134699 - 财政年份:2002
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似国自然基金
亚快速凝固铝合金薄带微观组织的脉冲电流调控与协同强韧化
- 批准号:52371119
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
双参量同步监测的薄包层Ω形光纤LSPR-干涉传感器构建及机理研究
- 批准号:62305235
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向高性能硅MOS量子比特应用的高κ薄栅二维电子气迁移率影响机制及提升研究
- 批准号:12374076
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
具有经典参数的薄的距离正则图的分类问题研究
- 批准号:12371339
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
人羊膜间充质干细胞通过分泌TGF-β1调控SLC2A1表达诱导巨噬细胞向M2重编程修复薄型子宫内膜的研究
- 批准号:82360314
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
High-performance thin film porous pyroelectric materials and composites for thermal sensing and harvesting
用于热传感和收集的高性能薄膜多孔热释电材料和复合材料
- 批准号:
EP/Y017412/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Fellowship
Understanding the synthesis and electronic behavior of beta tungsten thin film materials
了解β钨薄膜材料的合成和电子行为
- 批准号:
23K20274 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Exact's Thin-Film Ceramic Coating Material
Exact薄膜陶瓷涂层材料的开发
- 批准号:
10076171 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant for R&D
FuSe-TG: Reconfigurable Threshold Logic via Flexible Thin Film Electronics: A Pathway to Semiconductor Workforce Development
FuSe-TG:通过柔性薄膜电子器件的可重构阈值逻辑:半导体劳动力发展的途径
- 批准号:
2235385 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
- 批准号:
23K13655 - 财政年份:2023
- 资助金额:
$ 42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists