CDS&E: Fast Computational Methods for Quantum Simulation of 2D Spintronic and Electronic Devices

CDS

基本信息

  • 批准号:
    1904580
  • 负责人:
  • 金额:
    $ 33.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Nontechnical:New technologies such as artificial intelligence and the Internet of Things have driven ever increasing demands for computer processing and data storage. There is accordingly an imperative need to develop semiconductor memory and computing devices based on new physical mechanisms and materials for improved performance and power efficiency. Spintronics uses the physical property of electron spin rather than charge, with implications in the efficiency of data storage and transfer. Atomically thin two-dimensional (2D) semiconductors are promising materials with unique physical properties. These new phenomena and materials hold promise for developing new devices and circuits. Computer-aided simulation and design have played an essential and critical role in enabling modern electronics. Fast computational methods and computer-aided design tools for the new classes of 2D spintronic and electronic devices, however, have remain largely undeveloped. This hinders their adoption in future computing and data storage technologies. To address this deficiency, new simulation methods and novel computational techniques will be developed in this project. These will enable fast quantum simulations and design of 2D spintronic and electronic devices. The findings from the proposed effort will have direct impact on research areas such as advanced device design, high-performance computing, low-power electronics, new memory devices, and flexible electronics. Simulation codes and tools will be developed and shared with the research and education community, and students from high school to graduate levels will be engaged in this project.Technical:The goals of the project are to develop fast computational methods and approximations to significantly reduce the computational complexity and improve the computational efficiency for quantum simulation of 2D devices and to explore their applications and limitations in simulation and design of 2D spintronic and electronic devices. The proposed research activities include: (i) develop an unraveling technique for 2D device simulations, which turns the coupled matrix equations in the non-equilibrium Greens function simulations to uncoupled stochastic wave vector equations, (ii) develop scalable, high-performance solutions to the quantum transport equation by taking advantage of the massively parallel general purpose graphics processing unit computational platform, (iii) efficiently treat the transverse dimension of the 2D spintronic and electronic devices by exploiting two approximate methods, (iv) develop a correlation function mixing method to achieve fast and stable convergence, and (v) apply the above computational methods to develop new simulation capabilities and tools for a test suite of transition metal dichalcogenide and devices based on topological insulators (TIs). The project develops the essential knowledge base for computational methods in quantum device simulations, and paves the way toward computationally efficient simulation tools for devices based on the physical properties unique to 2D semiconductors and topological insulators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:人工智能和物联网等新技术推动了对计算机处理和数据存储的需求不断增长。因此,迫切需要开发基于新物理机制和材料的半导体存储器和计算设备,以提高性能和功率效率。自旋电子学利用电子自旋而不是电荷的物理特性,这对数据存储和传输的效率有影响。原子薄二维(2D)半导体是具有独特物理性质的有前途的材料。这些新现象和材料有望开发新设备和电路。计算机辅助仿真和设计在现代电子产品的实现中发挥了重要且关键的作用。然而,用于新型二维自旋电子和电子器件的快速计算方法和计算机辅助设计工具在很大程度上仍未开发出来。这阻碍了它们在未来计算和数据存储技术中的采用。为了解决这一缺陷,该项目将开发新的模拟方法和新颖的计算技术。这些将使快速量子模拟以及二维自旋电子和电子设备的设计成为可能。拟议工作的结果将对先进设备设计、高性能计算、低功耗电子设备、新型存储设备和柔性电子设备等研究领域产生直接影响。将开发仿真代码和工具并与研究和教育界共享,高中到研究生水平的学生都将参与该项目。技术:该项目的目标是开发快速计算方法和近似值,以显着降低计算复杂性并提高二维器件量子模拟的计算效率,并探索其在二维自旋电子和电子器件模拟和设计中的应用和局限性。拟议的研究活动包括:(i)开发二维器件模拟的解析技术,将非平衡格林函数模拟中的耦合矩阵方程转换为非耦合随机波矢量方程,(ii)开发可扩展的高性能解决方案通过利用大规模并行通用图形处理单元计算平台来计算量子输运方程,(iii)通过利用两种近似方法有效地处理二维自旋电子和电子器件的横向尺寸,(iv)开发一个相关函数混合方法以实现快速稳定的收敛,以及(v)应用上述计算方法为过渡金属二硫属化物和基于拓扑绝缘体(TI)的器件测试套件开发新的模拟功能和工具。该项目为量子器件模拟中的计算方法开发了必要的知识库,并为基于二维半导体和拓扑绝缘体独特的物理特性的器件的计算高效的模拟工具铺平了道路。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase Transition of MoTe 2 Controlled in van der Waals Heterostructure Nanoelectromechanical Systems
范德华异质结构纳米机电系统中 MoTe 2 相变的控制
  • DOI:
    10.1002/smll.202205327
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Ye, Fan;Islam, Arnob;Wang, Yanan;Guo, Jing;Feng, Philip X. ‐L.
  • 通讯作者:
    Feng, Philip X. ‐L.
High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation
  • DOI:
    10.1038/s41928-020-0441-9
  • 发表时间:
    2020-07-06
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Wu, Jiangbin;Chen, Hung-Yu;Wang, Han
  • 通讯作者:
    Wang, Han
Multiscale Simulation of Ferroelectric Tunnel Junction Memory Enabled by van der Waals Heterojunction: Comparison to Experiment and Performance Projection
Speed Up Quantum Transport Device Simulation on Ferroelectric Tunnel Junction With Machine Learning Methods
利用机器学习方法加速铁电隧道结的量子传输装置模拟
Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes
  • DOI:
    10.1038/s41928-021-00633-6
  • 发表时间:
    2021-09-06
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Chen, Changxin;Lin, Yu;Dai, Hongjie
  • 通讯作者:
    Dai, Hongjie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Guo其他文献

Preparation and Adsorption Properties of Magnetic Composite Microspheres Containing Metal–Organic Double Network Structure
金属有机双网络结构磁性复合微球的制备及其吸附性能
Hydrogen storage performance and phase transformations in as-cast and extruded Mg-Ni-Gd-Y-Zn-Cu alloys
铸态和挤压 Mg-Ni-Gd-Y-Zn-Cu 合金的储氢性能和相变
  • DOI:
    10.1016/j.jmst.2022.12.015
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hu Yao;Guang Zeng;Xin F. Tan;Qinfen Gu;Kazuhiro Nogita;Jing Guo;Qian Li
  • 通讯作者:
    Qian Li
A Flexible Concept for Designing Multiaxis Force/Torque Sensors Using Force Closure Theorem
使用力闭合定理设计多轴力/扭矩传感器的灵活概念
Green glycerol tailored composite membranes with boosted nanofiltration performance
具有增强纳滤性能的绿色甘油定制复合膜
  • DOI:
    10.1016/j.memsci.2022.121064
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Haoze Zeng;Jing Guo;Yanqiu Zhang;Dingyu Xing;Fan Yang;Junhui Huang;Sichao Huang;Lu Shao
  • 通讯作者:
    Lu Shao
Growth behavior and kinetics of austenite grain in low-carbon high-strength steel with copper
含铜低碳高强钢奥氏体晶粒长大行为及动力学
  • DOI:
    10.1088/2053-1591/ac2014
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Fanyun Meng;Zhen Xu;Kuijun Fu;Zhongjun Wang;Jing Guo;Jiaji Wang;Ming Zhao
  • 通讯作者:
    Ming Zhao

Jing Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Guo', 18)}}的其他基金

CDS&E: Machine-Learning-Driven Methods for Multiobjective and Inverse Design of van-der-Waals-Material-Based Devices
CDS
  • 批准号:
    2203625
  • 财政年份:
    2022
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
FET: Small: Modeling, Simulation, and Design for Robustness and Performance in Semiconductor-Based Quantum Computing
FET:小型:基于半导体的量子计算的鲁棒性和性能的建模、仿真和设计
  • 批准号:
    2007200
  • 财政年份:
    2020
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
  • 批准号:
    1809770
  • 财政年份:
    2018
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: GOALI: Multiscale CAD Framework of Atomically Thin Transistors for Flexible Electronic System Applications
SHF:小型:协作研究:GOALI:用于灵活电子系统应用的原子薄晶体管的多尺度 CAD 框架
  • 批准号:
    1618762
  • 财政年份:
    2016
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
CAREER: QMHP: A Multiphenomena Simulator toward New Functionalities of All-Graphene Devices
职业:QMHP:实现全石墨烯器件新功能的多现象模拟器
  • 批准号:
    0846563
  • 财政年份:
    2009
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Modeling, Simulation, and Design for Performance and Reliability in Carbon-based Electronics
SHF:小型:协作研究:碳基电子产品性能和可靠性的建模、仿真和设计
  • 批准号:
    0916683
  • 财政年份:
    2009
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
  • 批准号:
    12373107
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
  • 批准号:
    12303042
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于神经网络的FAST馈源融合测量算法研究
  • 批准号:
    12363010
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
保障和提升FAST主动反射面性能的关键力学问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于FAST和SKA先导阵搜索高银纬脉冲星并研究其垂直银盘分布
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CyberTraining: Implementation: Medium: Computational Materials Science Summer School - Fostering Accelerated Scientific Techniques (CMS3-FAST)
网络培训:实施:媒介:计算材料科学暑期学校 - 促进加速科学技术 (CMS3-FAST)
  • 批准号:
    2321005
  • 财政年份:
    2023
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
Development of a Fast and Accurate Computational Method through Learning-based Iterative Alternating Optimization
通过基于学习的迭代交替优化开发快速准确的计算方法
  • 批准号:
    23K16953
  • 财政年份:
    2023
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The human lung and lung-draining lymph node response to Mycobacterium tuberculosis
人肺和肺引流淋巴结对结核分枝杆菌的反应
  • 批准号:
    10666017
  • 财政年份:
    2023
  • 资助金额:
    $ 33.01万
  • 项目类别:
SBIR Phase I: A Flexion-Based Computational Fluid Dynamics Tool for the Fast Computation of Turbulent Flow over Complex Geometries
SBIR 第一阶段:基于弯曲的计算流体动力学工具,用于快速计算复杂几何形状的湍流
  • 批准号:
    2133757
  • 财政年份:
    2022
  • 资助金额:
    $ 33.01万
  • 项目类别:
    Standard Grant
Fast and Flexible Conjunction Coding in Biological and Artificial Vision
生物和人工视觉中快速灵活的联合编码
  • 批准号:
    10389898
  • 财政年份:
    2022
  • 资助金额:
    $ 33.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了