CDS&E: Elucidating the Structure and Catalytic Activity of Nanoparticles Under Catalytic Conditions Using Ab Initio Machine Learning Force Fields
CDS
基本信息
- 批准号:2245120
- 负责人:
- 金额:$ 29.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The manufacture of commercial and consumer chemical products relies heavily on catalytic reaction processes that consume a significant fraction of our nation's energy resources and are a major contributor to the emission of green-house gases. These catalysts often are composed of a metallic catalyst nanoparticle attached to a support of different material and can take on a nearly infinite number of configurations, shapes, compositions, and process operating conditions. To probe this vast parameter space for the optimal catalyst system purely by experimentation would be impossible and so efficient simulation tools are needed to explore catalyst behavior at the atomistic level. This proposal seeks to develop these simulation tools with emphasis on understanding how catalyst nanoparticle shapes change during realistic reactor operating conditions; this will be made possible by the proposal’s plan to improve the computational efficiency of molecular dynamics simulations using advanced machine learning methods. The computational models will be rigorously compared against known experimental benchmarks to guide simulator development and improve its prediction accuracy. The catalysts discovered using the simulation tools developed in this research program will contribute to the decarbonization of the chemical processes and will play an important role in developing circular chemical economies. The proposed research also will create opportunities to educate the next generation of researchers and industry leaders. Undergraduate students will learn programming skills that will increase their competitiveness in emerging job fields, and their immersive research experiences will prepare them for positions at top graduate schools and careers in higher education. Macroscopic renderings of catalysts designed with this software will be generated by 3D printing to demonstrate to the public the role computations play in accelerating catalyst design.This proposal seeks to develop and apply ab initio machine learning force fields (AIMLFF) to simulate nanoparticle (NP) catalysts under realistic reaction conditions and to help elucidate the nature of catalytic active sites. This proposed research will specifically address these challenges by hypothesizing that when AIMLFFs are trained on common structural features of periodic density functional theory (DFT) calculations that the community has identified as meaningful representations of NP catalysts, AIMLFF will be able to model NP catalysts directly under reaction-relevant conditions. This work will address critical questions related to the accuracy of the AIMLFFs by making comparisons to benchmark-quality microscopic and calorimetric measurements available in the literature, and will develop a general understanding of how the shape of metal NPs and available binding sites depend on the species of metal and the support under temperature and pressure conditions representative of reaction conditions. The proposed research will also develop an improved understanding of the relationship between catalytic activity and the evolution of NPs in comparison with high-quality X-ray measurements. Fundamental knowledge will be gained on how the equilibrium shape and defect density of supported metal NPs change over realistic reaction times for systems that are too large for current simulators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
商业和消费化学产品的制造严重依赖于催化反应过程,这些过程消耗了我国能源的很大一部分,并且是温室气体排放的主要贡献者。这些催化剂通常由附着在其上的金属催化剂纳米颗粒组成。不同材料的支持,并且可以呈现几乎无限数量的配置、形状、成分和工艺操作条件,纯粹通过实验来探索最佳催化剂系统的巨大参数空间是不可能的,因此需要高效的模拟工具。探索催化剂行为该提案旨在开发这些模拟工具,重点是了解催化剂纳米粒子形状在实际反应器操作条件下如何变化;该提案计划使用先进的机器学习方法提高分子动力学模拟的计算效率。计算模型将与已知的实验基准进行严格比较,以指导模拟器的开发并提高其预测准确性,使用本研究项目中开发的模拟工具发现的催化剂将有助于化学过程的脱碳,并将在开发中发挥重要作用。循环化学拟议的研究还将为教育下一代研究人员和行业领导者创造机会,本科生将学习编程技能,从而提高他们在新兴工作领域的竞争力,他们的沉浸式研究经验将为他们在顶尖研究生院的职位做好准备。使用该软件设计的催化剂的宏观渲染将通过 3D 打印生成,以向公众展示计算在加速催化剂设计中的作用。该提案旨在开发和应用从头算机器学习力场。 (AIMLFF) 在现实反应条件下模拟纳米颗粒 (NP) 催化剂,并帮助阐明催化活性位点的性质。这项拟议的研究将通过假设当 AIMLFF 接受周期性密度泛函理论的常见结构特征训练时,专门解决这些挑战。 DFT)计算被社区认为是 NP 催化剂的有意义的表示,AIMLFF 将能够直接在反应相关条件下对 NP 催化剂进行建模。这项工作将解决与 NP 催化剂相关的关键问题。通过与文献中提供的基准质量显微和量热测量进行比较,评估 AIMLFF 的准确性,并将对金属纳米颗粒的形状和可用结合位点如何取决于温度和压力下的金属种类和支撑物有一个总体了解与高质量的 X 射线测量相比,拟议的研究还将更好地了解催化活性和纳米粒子的演化之间的关系,从而获得关于平衡形状和缺陷密度的基础知识。支持的金属纳米粒子改变了对于当前模拟器来说太大的系统的实际反应时间。该奖项反映了 NSF 的法定使命,并且通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing the Quality and Reliability of Machine Learning Interatomic Potentials through Better Reporting Practices
- DOI:10.1021/acs.jpcc.4c00028
- 发表时间:2024-03-20
- 期刊:
- 影响因子:3.7
- 作者:Maxson,Tristan;Soyemi,Ademola;Szilvasi,Tibor
- 通讯作者:Szilvasi,Tibor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tibor Szilvasi其他文献
Tibor Szilvasi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tibor Szilvasi', 18)}}的其他基金
CAREER: Microkinetic Modeling-Driven Discovery of Molecular Catalysts
职业:微动力学模型驱动的分子催化剂发现
- 批准号:
2339481 - 财政年份:2024
- 资助金额:
$ 29.13万 - 项目类别:
Continuing Grant
相似国自然基金
线粒体DNA损伤的机制阐明及其作为农药亚致死性暴露生物标志物的应用
- 批准号:82373538
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鉴定赖氨酸感知受体并阐明其调节代谢内稳态的机制
- 批准号:32371231
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Cyclooctatin型抗肿瘤二萜生物合成途径阐明及化学多样性拓展
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
利用CITE-Seq技术阐明CD34+造血干细胞和祖细胞调控动脉粥样硬化发生和发展的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型-抗毒化碳限域磷化物异质结电解海水催化剂的设计与制备:阐明水分子和氯离子的竞争及效能增强机理
- 批准号:22109090
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
- 批准号:
2340664 - 财政年份:2024
- 资助金额:
$ 29.13万 - 项目类别:
Continuing Grant
Elucidating Mechanism of Macro-Structure in Narrative Production of Children and Development of the assessment methods
儿童叙事生产宏观结构机制的阐明及评估方法的发展
- 批准号:
23K02622 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating single cell changes in neurogenic brain regions during HIV and cannabinoid exposure
阐明艾滋病毒和大麻素暴露期间神经源性大脑区域的单细胞变化
- 批准号:
10686685 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Elucidating the role of the contralesional corticoreticulospinal tract for lower limb function after stroke.
阐明对侧皮质脊髓束对中风后下肢功能的作用。
- 批准号:
10667897 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别:
Elucidating High Oral Fluid Exposure Mechanisms of Buprenorphine to Reduce Dental Caries
阐明丁丙诺啡的高口腔液暴露机制以减少龋齿
- 批准号:
10765181 - 财政年份:2023
- 资助金额:
$ 29.13万 - 项目类别: