CAREER: Robots, Speech, and Learning in Inclusive Human Spaces
职业:包容性人类空间中的机器人、语音和学习
基本信息
- 批准号:2145642
- 负责人:
- 金额:$ 54.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As robots become more capable and ubiquitous, they are increasingly moving into traditionally human-centric environments such as as health care, education, and elder care. As robots engage in tasks as diverse as helping with household work, deploying medication, and tutoring students, it becomes increasingly critical for them to interact naturally with the people around them. Key to this progress is the development of robots that acquire an understanding of goals and objects from natural communications with a diverse set of end users. One way to address this is using language to build systems that learn from people they are interacting with. Algorithms and systems developed in this project will allow robots to learn about the world around them from linguistic interactions. This research will focus on understanding spoken language about the physical world from diverse groups of people, resulting in systems that are more able to robustly handle a wide variety of real-world interactions. Ultimately, the project will increase the usability and fairness of robots deployed in human spaces.This CAREER project will study how robots can learn about noisy, unpredictable human environments from spoken language combined with perception, using context derived from sensors to constrain the learning problem. Grounded language refers to language that occurs in and refers to the physical world in which robots operate. Human interactions are fundamentally contextual: when learning about the world, we focus learning by considering not only direct communication but also the context of that interaction. For much existing work on learning to understand physically situated language, text is the primary interlingua, and context is considered relatively narrowly. Additionally, reliance on pre-existing large datasets has begun to raise questions about bias and inclusivity in learning-driven technologies. To address these limitations, this work will focus on learning semantics directly from perceptual inputs combined with speech from diverse sources. The goal is to develop learning infrastructure, algorithms, and approaches to enable robots to learn to understand task instructions and object descriptions from spoken communication with end users. The project will develop new methods of efficiently learning from multi-modal data inputs, with the ultimate goal of enabling robots to efficiently and naturally learn about their world and the tasks they should perform.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着机器人变得越来越有能力和无处不在,它们越来越多地进入传统上以人为中心的环境,例如医疗保健,教育和老年护理。随着机器人从事多样化的任务,例如帮助家庭工作,部署药物和辅导学生,他们与周围的人自然互动变得越来越重要。进度的关键是机器人的开发,这些机器人从自然通信中与各种最终用户的自然通信中获得了了解。解决此问题的一种方法是使用语言来构建从他们正在与之互动的人那里学习的系统。该项目中开发的算法和系统将使机器人可以从语言互动中了解周围的世界。这项研究将着重于了解各种各样的人群的物理世界的口语,从而导致系统更有能力处理各种现实世界的互动。最终,该项目将增加在人类空间中部署的机器人的可用性和公平性。本职业项目将研究机器人如何利用传感器来限制学习问题的环境,从口头语言中学习嘈杂,不可预测的人类环境。扎根的语言是指发生在机器人操作的物理世界中的语言。人类互动在根本上是背景:当学习世界时,我们不仅要考虑直接交流,而且考虑这种互动的背景来集中学习。对于学习理解物理位置语言的许多现有工作,文本是主要的interlingua,并且上下文被认为相对狭窄。此外,依赖预先存在的大型数据集的依赖已开始引发有关学习驱动技术中偏见和包容性的问题。为了解决这些局限性,这项工作将集中于直接从感知输入以及各种来源的语音的学习语义上。目的是开发学习基础架构,算法和方法,使机器人能够从与最终用户进行交流中了解任务说明和对象描述。该项目将开发新的方法,从多模式数据输入中有效学习,最终的目标是使机器人能够有效自然地了解其世界以及他们应该执行的任务。该奖项反映了NSF的法定任务,并通过评估该基金会的知识分子功能和广泛的影响来审查Criteria。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scarecrows in Oz: The Use of Large Language Models in HRI
奥兹国的稻草人:大型语言模型在 HRI 中的使用
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Williams, Tom;Matuszek, Cynthia;Mead, Ross;DePalma, Nick
- 通讯作者:DePalma, Nick
Voice in the Machine: Ethical Considerations for Language-Capable Robots
机器中的声音:具有语言能力的机器人的道德考虑
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:22.7
- 作者:Wiliams, Tom;Matuszek, Cynthia;Jokinen, Kristiina;Korpan, Raj;Pustejovsky, James;Scassellati, Brian
- 通讯作者:Scassellati, Brian
Measuring Equality in Machine Learning Security Defenses: A Case Study in Speech Recognition
- DOI:10.1145/3605764.3623911
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Luke E. Richards;Edward Raff;Cynthia Matuszek
- 通讯作者:Luke E. Richards;Edward Raff;Cynthia Matuszek
Lessons From A Small-Scale Robot Joining Experiment in VR
小型机器人参与 VR 实验的经验教训
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Higgins, Padraig;Barron, Ryan;Engel, Don;Matuszek, Cynthia
- 通讯作者:Matuszek, Cynthia
Machine Learning Security as a Source of Unfairness in Human-Robot Interaction
机器学习安全是人机交互不公平的根源
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Richards, Luke E.;Matuszek, Cynthia
- 通讯作者:Matuszek, Cynthia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia Matuszek其他文献
Talking to Robots: Learning to Ground Human Language in Perception and Execution
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Cynthia Matuszek - 通讯作者:
Cynthia Matuszek
Automated Population of Cyc: Extracting Information about Named-entities from the Web
Cyc 的自动填充:从 Web 中提取有关命名实体的信息
- DOI:
10.13016/m2ns0m20t - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Purvesh Shah;David Schneider;Cynthia Matuszek;Robert C. Kahlert;Bjørn Aldag;David Baxter;J. Cabral;M. Witbrock;Jon Curtis - 通讯作者:
Jon Curtis
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.3
- 作者:
M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu - 通讯作者:
Zhou Yu
Photogrammetry and VR for Comparing 2D and Immersive Linguistic Data Collection (Student Abstract)
用于比较 2D 和沉浸式语言数据收集的摄影测量和 VR(学生摘要)
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jacob Rubinstein;Cynthia Matuszek;Don Engel - 通讯作者:
Don Engel
Grounded Language Learning: Where Robotics and NLP Meet
- DOI:
10.24963/ijcai.2018/810 - 发表时间:
2018-07 - 期刊:
- 影响因子:0
- 作者:
Cynthia Matuszek - 通讯作者:
Cynthia Matuszek
Cynthia Matuszek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia Matuszek', 18)}}的其他基金
NSF 2024 NRI/FRR PI Meeting; Baltimore, Maryland; 28-30 April 2024
NSF 2024 NRI/FRR PI 会议;
- 批准号:
2414547 - 财政年份:2024
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
- 批准号:
2024878 - 财政年份:2020
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
EAGER: Learning Language in Simulation for Real Robot Interaction
EAGER:在模拟中学习语言以实现真实的机器人交互
- 批准号:
1940931 - 财政年份:2019
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
RI: Small: Concept Formation in Partially Observable Domains
RI:小:部分可观察领域中的概念形成
- 批准号:
1813223 - 财政年份:2018
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
CRII: RI: Joint Models of Language and Context for Robotic Language Acquisition
CRII:RI:机器人语言习得的语言和语境联合模型
- 批准号:
1657469 - 财政年份:2017
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
- 批准号:
1637937 - 财政年份:2016
- 资助金额:
$ 54.89万 - 项目类别:
Standard Grant
相似国自然基金
面向机器人复杂操作的接触形面和抓取策略共适应学习
- 批准号:52305030
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向在轨大型结构的空间机器人多机协同接管控制方法研究
- 批准号:52305036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抛光机器人柔性变刚度并联执行器宏微协调运动规划与主被动柔顺控制
- 批准号:52305016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
杂乱堆叠场景下的机器人视觉伺服自适应抓取研究
- 批准号:52365065
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
面向水下崎岖地形辅助探测的仿生蛇机器人流固耦合与自适应控制研究
- 批准号:62303117
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A State-of-the-Art Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Alzheimer's Disease and Related Dementias
最先进的自动语音识别和对话平台,为阿尔茨海默病和相关痴呆症患者提供社交辅助机器人
- 批准号:
10699887 - 财政年份:2023
- 资助金额:
$ 54.89万 - 项目类别:
Noise-robust speech recognition and spoken dialog system for service robots
用于服务机器人的抗噪声语音识别和语音对话系统
- 批准号:
19K24343 - 财政年份:2019
- 资助金额:
$ 54.89万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A Specialized Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Mild-to-Moderate Alzheimer's Disease and Related Dementia
专门的自动语音识别和对话平台,为患有轻度至中度阿尔茨海默病和相关痴呆症的人提供社交辅助机器人
- 批准号:
10230460 - 财政年份:2019
- 资助金额:
$ 54.89万 - 项目类别:
A Specialized Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Mild-to-Moderate Alzheimer's Disease and Related Dementia
专门的自动语音识别和对话平台,为患有轻度至中度阿尔茨海默病和相关痴呆症的人提供社交辅助机器人
- 批准号:
10263325 - 财政年份:2019
- 资助金额:
$ 54.89万 - 项目类别:
Socially-Assistive Robots for Alzheimer's (SARA)
阿尔茨海默病社交辅助机器人 (SARA)
- 批准号:
10018633 - 财政年份:2019
- 资助金额:
$ 54.89万 - 项目类别: