NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition

NRI:FND:用于机器人语言习得领域适应的半监督深度学习

基本信息

  • 批准号:
    2024878
  • 负责人:
  • 金额:
    $ 74.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This project will enable robots to learn to perform tasks with human teammates from language and other human modalities, and then transfer the learned knowledge across heterogeneous platforms and tasks. This will ultimately allow human-robot teaming in domains where people use varied language and instructions to complete complex tasks. As robots become more capable and ubiquitous, they are increasingly moving into complex, human-centric environments such as workplaces and homes. Being able to deploy useful robots in settings where human specialists are stretched thin, such as assistive technology, elder care, and education, has the potential to have far-reaching impacts on human quality of life. Achieving this will require the development of robots that learn, from natural interaction, about an end user's goals and environment. This work is intended to make robots more accessible and usable for non-specialists. In order to verify success and involve the broader community, tasks will be drawn from and tested in conjunction with community Makerspaces, which are strongly linked with both education and community involvement. The award includes an education and outreach plan designed to increase participation by and retention of women and underrepresented minorities (URM) in robotics and computing, engaging with UMBC's large URM population and world-class programs in this space.This award addresses how collaborative learning and successful performance during human-robot interactions can be accomplished by learning from and acting on grounded language. To accomplish this, this project will revolve around learning structured representations of abstract knowledge with goal-directed task completion, grounded in a physical context. There are three high-level research thrusts. In the first, new perceptual models to learn an alignment among a robot's multiple, heterogeneous sensor and data streams will be developed. In the second, synchronous grounded language models will be developed to better capture both general linguistic and implicit contextual expectations that are needed for completing tasks. In the third, a deep reinforcement learning framework will be developed that can leverage the advances achieved by the first two thrusts, allowing the development of techniques for learning conceptual knowledge. Taken together, these advances will allow an agent to achieve domain adaptation, improve its behaviors in new environments, and transfer conceptual knowledge among robotic agents.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使机器人能够从语言和其他人类模式中学习与人类队友执行任务,然后通过异质平台和任务转移学识关系。这最终将允许在人们使用各种语言和说明完成复杂任务的领域中进行人手组合。随着机器人变得越来越强大和无处不在,它们越来越多地进入复杂的以人为中心的环境(例如工作场所和房屋)。能够在人类专家稀薄的环境中部署有用的机器人,例如辅助技术,老年人护理和教育,有可能对人类生活质量产生深远的影响。实现这一目标将需要开发从自然互动中学习最终用户的目标和环境的机器人。这项工作旨在使机器人更容易访问,并且可用于非专家。为了验证成功并涉及更广泛的社区,将与社区创作空间一起绘制和测试,这些任务与教育和社区的参与密切相关。该奖项包括一个教育和外展计划,旨在通过在机器人技术和计算机领域的妇女和代表性不足的少数群体(URM)来增加参与,并与UMBC的大型URM人口和该领域的世界一流计划互动。该奖项解决了如何通过学习在人类互动期间的协作学习和成功表现,可以通过学习和在基础语言上的学习来实现。为了实现这一目标,该项目将围绕学习以目标指导的任务完成的学习结构化表示,并以物理背景为基础。有三个高级研究推力。首先,将开发出新的感知模型,以学习机器人多个,异构传感器和数据流之间的对齐方式。在第二个中,将开发同步的基础语言模型,以更好地捕获完成任务所需的一般语言和隐性上下文期望。在第三个中,将开发一个深厚的增强学习框架,可以利用前两个推力所取得的进步,从而开发学习概念知识的技术。综上所述,这些进步将使代理商能够实现领域的适应性,改善其在新环境中的行为,并在机器人代理之间转移概念知识。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子来评估的支持,并具有更广泛的影响。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring Equality in Machine Learning Security Defenses: A Case Study in Speech Recognition
POQue: Asking Participant-specific Outcome Questions for a Deeper Understanding of Complex Events
  • DOI:
    10.48550/arxiv.2212.02629
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sai Vallurupalli;Sayontan Ghosh;K. Erk;Niranjan Balasubramanian;Francis Ferraro
  • 通讯作者:
    Sai Vallurupalli;Sayontan Ghosh;K. Erk;Niranjan Balasubramanian;Francis Ferraro
Jointly Identifying and Fixing Inconsistent Readings from Information Extraction Systems
联合识别和修复信息提取系统的不一致读数
Lessons From A Small-Scale Robot Joining Experiment in VR
小型机器人参与 VR 实验的经验教训
Augmenting Simulation Data with Sensor Effects for Improved Domain Transfer
利用传感器效应增强仿真数据以改进域传输
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia Matuszek其他文献

Talking to Robots: Learning to Ground Human Language in Perception and Execution
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cynthia Matuszek
  • 通讯作者:
    Cynthia Matuszek
Automated Population of Cyc: Extracting Information about Named-entities from the Web
Cyc 的自动填充:从 Web 中提取有关命名实体的信息
  • DOI:
    10.13016/m2ns0m20t
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Purvesh Shah;David Schneider;Cynthia Matuszek;Robert C. Kahlert;Bjørn Aldag;David Baxter;J. Cabral;M. Witbrock;Jon Curtis
  • 通讯作者:
    Jon Curtis
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu
  • 通讯作者:
    Zhou Yu
Photogrammetry and VR for Comparing 2D and Immersive Linguistic Data Collection (Student Abstract)
用于比较 2D 和沉浸式语言数据收集的摄影测量和 VR(学生摘要)
Grounded Language Learning: Where Robotics and NLP Meet
  • DOI:
    10.24963/ijcai.2018/810
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cynthia Matuszek
  • 通讯作者:
    Cynthia Matuszek

Cynthia Matuszek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia Matuszek', 18)}}的其他基金

NSF 2024 NRI/FRR PI Meeting; Baltimore, Maryland; 28-30 April 2024
NSF 2024 NRI/FRR PI 会议;
  • 批准号:
    2414547
  • 财政年份:
    2024
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
CAREER: Robots, Speech, and Learning in Inclusive Human Spaces
职业:包容性人类空间中的机器人、语音和学习
  • 批准号:
    2145642
  • 财政年份:
    2022
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
EAGER: Learning Language in Simulation for Real Robot Interaction
EAGER:在模拟中学习语言以实现真实的机器人交互
  • 批准号:
    1940931
  • 财政年份:
    2019
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
RI: Small: Concept Formation in Partially Observable Domains
RI:小:部分可观察领域中的概念形成
  • 批准号:
    1813223
  • 财政年份:
    2018
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
CRII: RI: Joint Models of Language and Context for Robotic Language Acquisition
CRII:RI:机器人语言习得的语言和语境联合模型
  • 批准号:
    1657469
  • 财政年份:
    2017
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
  • 批准号:
    1637937
  • 财政年份:
    2016
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

Movement perception in Functional Neurological Disorder (FND)
功能性神经疾病 (FND) 的运动感知
  • 批准号:
    MR/Y004000/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Research Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2348839
  • 财政年份:
    2023
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
S&AS:FND:COLLAB: Planning Coordinated Event Observation for Structured Narratives
S
  • 批准号:
    2313929
  • 财政年份:
    2022
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
  • 批准号:
    2024882
  • 财政年份:
    2021
  • 资助金额:
    $ 74.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了