EAGER: Learning Language in Simulation for Real Robot Interaction
EAGER:在模拟中学习语言以实现真实的机器人交互
基本信息
- 批准号:1940931
- 负责人:
- 金额:$ 21.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While robots are rapidly becoming more capable and ubiquitous, theirutility is still severely limited by the inability of regular users tocustomize their behaviors. This EArly Grant for Exploratory Research (EAGER) will explore how examples of language, gaze, and other communications can be collected from avirtual interaction with a robot in order to learn how robots caninteract better with end users. Current robots' difficulty of use andinflexibility are major factors preventing them from being morebroadly available to populations that might benefit, such asaging-in-place seniors. One promising solution is to let users controland teach robots with natural language, an intuitive and comfortablemechanism. This has led to active research in the area of groundedlanguage acquisition: learning language that refers to and is informedby the physical world. Given the complexity of robotic systems, thereis growing interest in approaches that take advantage of the latest invirtual reality technology, which can lower the barrier of entry tothis research.This EAGER project develops infrastructure that will lay the necessarygroundwork for applying simulation-to-reality approaches to naturallanguage interactions with robots. This project aims to bootstraprobots' learning to understand language, using a combination of datacollected in a high-fidelity virtual reality environment withsimulated robots and real-world testing on physical robots. A personwill interact with simulated robots in virtual reality, and his or heractions and language will be recorded. By integrating with existingrobotics technology, this project will model the connection betweenthe language people use and the robot's perceptions and actions.Natural language descriptions of what is happening in simulation willbe obtained and used to train a joint model of language and simulatedpercepts as a way to learn grounded language. The effectiveness of theframework and algorithms will be measured on automaticprediction/generation tasks and transferability of learned models to areal, physical robot. This work will serve as a proof of concept forthe value of combining robotics simulation with human interaction, aswell as providing interested researchers with resources to bootstraptheir own work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管机器人迅速变得越来越有能力和无处不在,但它们的行为无法定期将其行为限制在很大程度上受到严重限制。这项探索性研究的早期赠款(急切)将探讨如何从与机器人的天年互动中收集语言,凝视和其他通信的示例,以了解机器人如何与最终用户更好地与最终用户进行更好的影响。当前的机器人的使用难度和互补性是阻止他们在可能受益的人口(例如实地老年人)的人口中更加宽敞地使用的主要因素。一种有希望的解决方案是让用户控制和用自然语言教授机器人,这是一种直观而舒适的机制。这导致了在扎根语言获取领域的积极研究:指的是涉及物理世界的学习语言。鉴于机器人系统的复杂性,人们对利用最新的Inviral Reality技术的方法越来越兴趣,从而降低了入境研究的障碍。此急切的项目开发基础架构,这将为将模拟对现实性方法应用于与机器人的自然语言相互作用。该项目的目的是使用在高保真虚拟现实环境中使用的数据进行结合,并在物理机器人上模拟了现实的测试,以实现Bootstraprobot的学习来理解语言。一个人将与虚拟现实中的模拟机器人互动,将记录其或遗传和语言。通过与现有生物体技术集成,该项目将在人们使用的语言和机器人的看法和动作之间建模连接。对模拟中正在发生的事情的自然语言描述将获得并用于培训语言的联合模型和模拟模型,并将其作为一种学习接地语言的方式。框架和算法的有效性将以自动预测/生成任务以及学习模型转移到Areal,物理机器人的能力进行衡量。这项工作将作为将机器人模拟与人类互动相结合的价值的概念证明,同时为有兴趣的研究人员提供了Bootstraptheir自己的作品的资源。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准来通过评估来支持的。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Planning with Abstract Learned Models While Learning Transferable Subtasks
在学习可转移子任务的同时使用抽象学习模型进行规划
- DOI:10.1609/aaai.v34i06.6555
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Winder, John;Milani, Stephanie;Landen, Matthew;Oh, Erebus;Parr, Shane;Squire, Shawn;desJardins, Marie;Matuszek, Cynthia
- 通讯作者:Matuszek, Cynthia
Jointly Identifying and Fixing Inconsistent Readings from Information Extraction Systems
联合识别和修复信息提取系统的不一致读数
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Padia, Ankur;Ferraro, Francis;Finin, Tim
- 通讯作者:Finin, Tim
Bridging the Gap: Using Deep Acoustic Representations to Learn Grounded Language from Percepts and Raw Speech
- DOI:10.1609/aaai.v36i10.21335
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Gaoussou Youssouf Kebe;Luke E. Richards;Edward Raff;Francis Ferraro;Cynthia Matuszek
- 通讯作者:Gaoussou Youssouf Kebe;Luke E. Richards;Edward Raff;Francis Ferraro;Cynthia Matuszek
Neural Variational Learning for Grounded Language Acquisition
- DOI:10.1109/ro-man50785.2021.9515374
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Nisha Pillai;Cynthia Matuszek;Francis Ferraro
- 通讯作者:Nisha Pillai;Cynthia Matuszek;Francis Ferraro
Head Pose for Object Deixis in VR-Based Human-Robot Interaction
基于 VR 的人机交互中物体指示的头部姿势
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Higgins, Padraig;Barron, Ryan;Matuszek, Cynthia
- 通讯作者:Matuszek, Cynthia
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia Matuszek其他文献
Talking to Robots: Learning to Ground Human Language in Perception and Execution
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Cynthia Matuszek - 通讯作者:
Cynthia Matuszek
Automated Population of Cyc: Extracting Information about Named-entities from the Web
Cyc 的自动填充:从 Web 中提取有关命名实体的信息
- DOI:
10.13016/m2ns0m20t - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Purvesh Shah;David Schneider;Cynthia Matuszek;Robert C. Kahlert;Bjørn Aldag;David Baxter;J. Cabral;M. Witbrock;Jon Curtis - 通讯作者:
Jon Curtis
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.3
- 作者:
M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu - 通讯作者:
Zhou Yu
Photogrammetry and VR for Comparing 2D and Immersive Linguistic Data Collection (Student Abstract)
用于比较 2D 和沉浸式语言数据收集的摄影测量和 VR(学生摘要)
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jacob Rubinstein;Cynthia Matuszek;Don Engel - 通讯作者:
Don Engel
Grounded Language Learning: Where Robotics and NLP Meet
- DOI:
10.24963/ijcai.2018/810 - 发表时间:
2018-07 - 期刊:
- 影响因子:0
- 作者:
Cynthia Matuszek - 通讯作者:
Cynthia Matuszek
Cynthia Matuszek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia Matuszek', 18)}}的其他基金
NSF 2024 NRI/FRR PI Meeting; Baltimore, Maryland; 28-30 April 2024
NSF 2024 NRI/FRR PI 会议;
- 批准号:
2414547 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
CAREER: Robots, Speech, and Learning in Inclusive Human Spaces
职业:包容性人类空间中的机器人、语音和学习
- 批准号:
2145642 - 财政年份:2022
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
- 批准号:
2024878 - 财政年份:2020
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
RI: Small: Concept Formation in Partially Observable Domains
RI:小:部分可观察领域中的概念形成
- 批准号:
1813223 - 财政年份:2018
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
CRII: RI: Joint Models of Language and Context for Robotic Language Acquisition
CRII:RI:机器人语言习得的语言和语境联合模型
- 批准号:
1657469 - 财政年份:2017
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
- 批准号:
1637937 - 财政年份:2016
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
相似国自然基金
少监督下的跨层次语言结构建模及表征学习研究
- 批准号:62306216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
因果机制引导的自然语言处理深度学习建模研究
- 批准号:62336006
- 批准年份:2023
- 资助金额:228 万元
- 项目类别:重点项目
新疆地区国家通用语言学习者语音产出与发音评测研究
- 批准号:62307030
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向问答系统的神经与符号知识相互增强方法研究
- 批准号:62376270
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于自然语言处理和反绎学习的航运信用评估模型研究
- 批准号:62372077
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329273 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329274 - 财政年份:2023
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
EAGER: Language Learning through Machine Theory of Mind
EAGER:通过机器心理理论学习语言
- 批准号:
2141751 - 财政年份:2021
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Scaling Up Discriminative Learning for Natural Language Understanding and Translation
EAGER:协作研究:扩大自然语言理解和翻译的判别学习
- 批准号:
1656051 - 财政年份:2015
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Scaling Up Discriminative Learning for Natural Language Understanding and Translation
EAGER:协作研究:扩大自然语言理解和翻译的判别学习
- 批准号:
1449278 - 财政年份:2014
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant