CRII: RI: Joint Models of Language and Context for Robotic Language Acquisition

CRII:RI:机器人语言习得的语言和语境联合模型

基本信息

  • 批准号:
    1657469
  • 负责人:
  • 金额:
    $ 16.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

As robots become smaller, less expensive, and more capable, they are able to perform an increasing variety of tasks, leading to revolutionary improvements in domains such as automobile safety and manufacturing. However, their inflexibility makes them hard to deploy in human-centric environments such as homes and schools, where their tasks and environments are constantly changing. Meanwhile, learning to understand language about the physical world is a growing research area in both robotics and natural language processing. The core problem is how the meanings of words are grounded in the noisy, perceptual world in which a robot operates. This project explores how robots can learn about the world from natural language in order to take instructions and learn about their environment naturally and intuitively from people. The ability to follow directions reduces the adoption barrier for robots in domains such as assistive technology, education, and caretaking, where interactions with non-specialists are crucial. Such robots have the potential to ultimately improve autonomy and independence for populations such as aging-in-place elders; for example, a manipulator arm that can learn from a user?s explanation how to handle food or open novel containers would directly affect the independence of persons with dexterity concerns such as advanced arthritis. This is an exploratory investigation of how linguistic and perceptual models can be expanded during interaction, allowing robots to understand novel language about unanticipated domains. In particular, the focus is on developing new learning approaches that correctly induce joint models of language and perception, building data-driven language models that add new semantic representations over time. The work combines semantic parser learning, which provides a distribution over possible interpretations of language, with perceptual representations of the underlying world. New concepts are added on the fly as new words and new perceptual data are encountered, and a semantically meaningful model can be trained by maximizing the expected likelihood of language and visual components. This integrated approach allows for effective model updates with no explicit labeling of words or percepts. This approach will be combined with experiments on improving learning efficiency by incorporating active learning, leveraging a robot's ability to ask questions about objects in the world.
随着机器人变得越来越小,便宜且功能更高,他们能够执行越来越多的任务,从而导致诸如汽车安全和制造等领域的革命性改进。但是,它们的僵硬性使他们难以在以人为中心的环境(例如房屋和学校)中部署,在这些环境中,他们的任务和环境在不断变化。同时,学习了解物理世界的语言是机器人技术和自然语言处理中不断增长的研究领域。核心问题是单词的含义如何基于机器人运行的嘈杂,感知世界。该项目探讨了机器人如何从自然语言中学习世界,以便从人自然和直观地了解他们的环境。遵循指示的能力降低了辅助技术,教育和照料等领域的机器人的采用障碍,与非专家的互动至关重要。这样的机器人有可能最终提高诸如现有长老等人口的自主权和独立性。例如,一个可以从用户那里学习的操纵臂如何处理食物或开放的新颖容器将直接影响具有敏捷问题(例如高级关节炎)的人的独立性。这是对如何在互动过程中扩展语言和感知模型的探索性研究,使机器人可以理解有关意外领域的新语言。特别是,重点是开发正确诱导语言和感知联合模型的新学习方法,构建数据驱动的语言模型,以随着时间的推移添加新的语义表示。该作品结合了语义解析器的学习,该学习提供了对语言可能解释的分布,以及对基础世界的感知表示。随着新单词和新的感知数据,可以随时添加新概念,并且可以通过最大化语言和视觉组件的预期可能性来训练语义上有意义的模型。这种集成的方法允许有效的模型更新,而无明确的单词或知觉标记。这种方法将通过合并积极的学习,利用机器人提出有关世界上对象的问题的能力来提高学习效率的实验。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unsupervised Selection of Negative Examples for Grounded Language Learning
扎根语言学习的反面例子的无监督选择
Neural Variational Learning for Grounded Language Acquisition
Grounded Language Learning: Where Robotics and NLP Meet (invited talk)
扎根语言学习:机器人学和 NLP 的交汇点(特邀演讲)
Sampling Approach Matters: Active Learning for Robotic Language Acquisition
Learning Object Attributes with Category-Free Grounded Language from Deep Featurization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cynthia Matuszek其他文献

Talking to Robots: Learning to Ground Human Language in Perception and Execution
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cynthia Matuszek
  • 通讯作者:
    Cynthia Matuszek
Automated Population of Cyc: Extracting Information about Named-entities from the Web
Cyc 的自动填充:从 Web 中提取有关命名实体的信息
  • DOI:
    10.13016/m2ns0m20t
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Purvesh Shah;David Schneider;Cynthia Matuszek;Robert C. Kahlert;Bjørn Aldag;David Baxter;J. Cabral;M. Witbrock;Jon Curtis
  • 通讯作者:
    Jon Curtis
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu
  • 通讯作者:
    Zhou Yu
Photogrammetry and VR for Comparing 2D and Immersive Linguistic Data Collection (Student Abstract)
用于比较 2D 和沉浸式语言数据收集的摄影测量和 VR(学生摘要)
Grounded Language Learning: Where Robotics and NLP Meet
  • DOI:
    10.24963/ijcai.2018/810
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cynthia Matuszek
  • 通讯作者:
    Cynthia Matuszek

Cynthia Matuszek的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cynthia Matuszek', 18)}}的其他基金

NSF 2024 NRI/FRR PI Meeting; Baltimore, Maryland; 28-30 April 2024
NSF 2024 NRI/FRR PI 会议;
  • 批准号:
    2414547
  • 财政年份:
    2024
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant
CAREER: Robots, Speech, and Learning in Inclusive Human Spaces
职业:包容性人类空间中的机器人、语音和学习
  • 批准号:
    2145642
  • 财政年份:
    2022
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant
NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
  • 批准号:
    2024878
  • 财政年份:
    2020
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant
EAGER: Learning Language in Simulation for Real Robot Interaction
EAGER:在模拟中学习语言以实现真实的机器人交互
  • 批准号:
    1940931
  • 财政年份:
    2019
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant
RI: Small: Concept Formation in Partially Observable Domains
RI:小:部分可观察领域中的概念形成
  • 批准号:
    1813223
  • 财政年份:
    2018
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
  • 批准号:
    1637937
  • 财政年份:
    2016
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant

相似国自然基金

跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
  • 批准号:
    82301120
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于“免疫-神经”网络探讨眼针活化CI/RI大鼠MC靶向H3R调节“免疫监视”的抗炎机制
  • 批准号:
    82374375
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
  • 批准号:
    82300022
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
  • 批准号:
    32200568
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
  • 批准号:
    2348689
  • 财政年份:
    2023
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
  • 批准号:
    1955365
  • 财政年份:
    2020
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Learning Joint Crowd-Space Embeddings for Cross-Modal Crowd Behavior Prediction
合作研究:RI:Medium:学习联合人群空间嵌入以进行跨模式人群行为预测
  • 批准号:
    1955404
  • 财政年份:
    2020
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Standard Grant
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
  • 批准号:
    1956050
  • 财政年份:
    2020
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI:Medium: Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
  • 批准号:
    1955154
  • 财政年份:
    2020
  • 资助金额:
    $ 16.31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了