MRI: Acquisition of a Scanning X-Ray Photoelectron Spectroscopy Microprobe for Fundamental and Applied Materials Research, Education, and Outreach
MRI:采购扫描 X 射线光电子能谱微探针,用于基础和应用材料研究、教育和推广
基本信息
- 批准号:2117623
- 负责人:
- 金额:$ 69.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Major Research Instrumentation award supports the acquisition of a scanning X-ray photoelectron spectroscopy (XPS) microprobe to serve a large community of scientists at the University of Texas at Austin. XPS is a surface sensitive technique based on the photoelectric effect that can enable spatially- and depth-resolved surface chemical characterization of materials. XPS data is of great importance to the understanding the relationship between structure, properties, processing, and functional behavior of novel materials. Advances in nanoscience and nanotechnology hinge on developing such an understanding. The advanced capabilities of this instrument will have a profound impact on the research and educational programs at the University of Texas at Austin. It will enable next-generation materials research, especially for renewable energy, catalysis, electronics, environmental sciences, and health. The XPS will serve as a research facility of excellence for remotely controlled studies of advanced materials for southern US universities and industries and enhance the mission of center-level research activities involving a diverse set of faculties. Research enabled by the instrument will foster the creation of start-up companies by providing the necessary research base with state-of-the-art and easily accessible instrumentation. This instrument will also have a strong impact on the education and training of the next generation of scientists from graduate students to faculty. The instrument will also be incorporated into outreach activities that involve K-12 programs, community college students and teachers, and the general public.The acquisition of a versatile and high-performance XPS with several unique, state-of-the-art features will allow analytical measurements with complementary techniques (such as Auger spectroscopy and reflection electron energy loss spectroscopy) and in-depth analysis of chemically sensitive materials. The instrument has high sensitivity, excellent micro-area spectroscopy performance, fast acquisition of imaging XPS data, effective charge compensation on insulating samples, excellent angular resolution, and facile identification of regions of interests, as well as full remote access with active control capability. This will enable a wide range of forefront research and discovery in the area of materials science and engineering, nanoscience, and nanotechnology, including the development of low-cost, efficient materials for solar cells, batteries for transportation and grid storage, solar-to-fuel conversion, fuel cells, catalysts, low-dimensional materials, nano-electronics, additive manufacturing, pharmaceuticals, drug delivery, as well as water purification and harvesting. These capabilities will thus contribute to the development of a broad range of research and educational activities, including those supported by major centers at UT-Austin, such as the NSF-MRSEC Center for Dynamics and Control of Materials, the NSF-ERC Nanomanufacturing Systems for Mobile Computing and Energy Technologies, and the NSF-ERC Center for Innovative and Strategic Transformation of Alkane Resources. This will create vibrant synergies among UT-Austin’s diverse research, training, and educational enterprise.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该重大研究仪器奖支持购买扫描 X 射线光电子能谱 (XPS) 微探针,为德克萨斯大学奥斯汀分校的广大科学家群体提供服务 XPS 是一种基于光电效应的表面敏感技术,可以在空间上实现。材料的深度分辨表面化学表征对于理解新型材料的结构、性质、加工和功能行为之间的关系非常重要。纳米科学和纳米技术的进步取决于这种理解。该仪器的先进功能将对德克萨斯大学奥斯汀分校的研究和教育项目产生深远的影响,它将促进下一代材料研究,特别是可再生能源、催化、电子、环境科学和健康领域。将成为美国南部大学和工业先进材料远程控制研究的卓越研究设施,并增强中心级研究活动的使命。该仪器支持的多样化研究将促进初创企业的创建。公司通过提供必要的研究基础该仪器还将对从研究生到教师的下一代科学家的教育和培训产生重大影响。 12 个项目、社区学院学生和教师以及公众。购买具有多种独特、最先进功能的多功能高性能 XPS 将允许使用互补技术(例如俄歇光谱和反射)进行分析测量电子能量损失谱)和深入分析该仪器具有高灵敏度、优异的微区光谱性能、快速采集成像XPS数据、对绝缘样品进行有效的电荷补偿、优异的角分辨率、轻松识别感兴趣区域以及完全远程访问。具有主动控制能力。这将使材料科学与工程、纳米科学和纳米技术领域的广泛开创性研究和发现成为可能,包括开发低成本的太阳能电池、高效运输电池和网格存储,因此,太阳能到燃料的转换、燃料电池、催化剂、低维材料、纳米电子、增材制造、制药、药物输送以及水净化和收集将有助于广泛领域的发展。研究和教育活动,包括由 UT-奥斯汀分校主要中心支持的活动,例如 NSF-MRSEC 材料动力学和控制中心、NSF-ERC 移动计算和能源技术纳米制造系统以及NSF-ERC 烷烃资源创新和战略转型中心这将在 UT-奥斯汀分校的多元化研究、培训和教育企业之间产生充满活力的协同效应。该奖项反映了 NSF 的法定使命,并通过使用基金会的知识进行评估,被认为值得支持。优点和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linking Molecular Structure and Lubrication Mechanisms in Tetraalkylammonium Orthoborate Ionic Liquids
连接四烷基铵原硼酸离子液体的分子结构和润滑机制
- DOI:10.1007/s11249-023-01714-7
- 发表时间:2023-06
- 期刊:
- 影响因子:3.2
- 作者:Yan, Jieming;Lien, Hsu;Mangolini, Filippo
- 通讯作者:Mangolini, Filippo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Filippo Mangolini其他文献
In situnanoscale evaluation of pressure-induced changes in structural morphology of phosphonium phosphate ionic liquid at single-asperity contacts
- DOI:
10.1039/d1ra08026a - 发表时间:
2021-12 - 期刊:
- 影响因子:3.9
- 作者:
Zixuan Li;Oscar Morales-Collazo;Robert Chrostowski;Joan F. Brennecke;Filippo Mangolini - 通讯作者:
Filippo Mangolini
Engineering encapsulated ionic liquids for next-generation applications
- DOI:
10.1039/d1ra05034f - 发表时间:
2021-11 - 期刊:
- 影响因子:3.9
- 作者:
Jieming Yan;Filippo Mangolini - 通讯作者:
Filippo Mangolini
Filippo Mangolini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Filippo Mangolini', 18)}}的其他基金
Collaborative Research: Understanding the Lubrication Mechanisms of Environmentally-Compatible Protic Ionic Liquids
合作研究:了解环境相容的质子离子液体的润滑机制
- 批准号:
2246863 - 财政年份:2023
- 资助金额:
$ 69.85万 - 项目类别:
Standard Grant
CAREER: Linking Molecular Structure and Lubrication Mechanism in Halogen-Free, Boron-Based Ionic Liquids
职业:连接无卤硼基离子液体中的分子结构和润滑机制
- 批准号:
2042304 - 财政年份:2021
- 资助金额:
$ 69.85万 - 项目类别:
Standard Grant
Nanoscale Investigation of the Surface Reactivity of Ionic Liquids under Harsh Tribological Conditions
恶劣摩擦条件下离子液体表面反应性的纳米级研究
- 批准号:
EP/P012914/1 - 财政年份:2017
- 资助金额:
$ 69.85万 - 项目类别:
Research Grant
相似国自然基金
高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
- 批准号:52374316
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
- 批准号:82300777
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
- 批准号:82360382
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
- 批准号:82373331
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 69.85万 - 项目类别:
Deep-Learning-Augmented Quantitative Gradient Recalled Echo (DLA-qGRE) MRI for in vivo Clinical Evaluation of Brain Microstructural Neurodegeneration in Alzheimer Disease
深度学习增强定量梯度回忆回波 (DLA-qGRE) MRI 用于阿尔茨海默病脑微结构神经变性的体内临床评估
- 批准号:
10659833 - 财政年份:2023
- 资助金额:
$ 69.85万 - 项目类别:
Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
- 批准号:
10611212 - 财政年份:2023
- 资助金额:
$ 69.85万 - 项目类别:
MRI: Acquisition of a Scanning Electron Microscope to Strengthen Research Capabilities at a Primarily Undergraduate Institution
MRI:购买扫描电子显微镜以加强本科机构的研究能力
- 批准号:
2117210 - 财政年份:2023
- 资助金额:
$ 69.85万 - 项目类别:
Standard Grant