Deep-Learning-Augmented Quantitative Gradient Recalled Echo (DLA-qGRE) MRI for in vivo Clinical Evaluation of Brain Microstructural Neurodegeneration in Alzheimer Disease
深度学习增强定量梯度回忆回波 (DLA-qGRE) MRI 用于阿尔茨海默病脑微结构神经变性的体内临床评估
基本信息
- 批准号:10659833
- 负责人:
- 金额:$ 199.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAgeAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosticAlzheimer&aposs disease pathologyAlzheimer&aposs disease testAmyloidApplications GrantsArchitectureAtrophicBiologicalBiological ModelsBiophysicsBrainBrain DiseasesBrain regionClinicalComputer softwareDarknessDataData AnalysesDementiaDetectionDevelopmentDiagnosticDiagnostic testsDisease ProgressionExcisionFutureGoalsHealthHourImageInterventionLeast-Squares AnalysisMagnetic Resonance ImagingManufacturerMapsMeasurementMeasuresMethodologyMethodsModelingMonitorMorphologic artifactsMotionNerve DegenerationNeurodegenerative DisordersNeuronsNoiseOutcome MeasureParticipantPathologicPatientsPatternPersonsPharmaceutical PreparationsPhysiologic pulsePopulationPredispositionProceduresPropertyProtocols documentationRF coilResearchResolutionSamplingScanningSensitivity and SpecificitySignal TransductionSymptomsSystemTechniquesTestingTimeTissuesTrainingTranslatingbiophysical modelbrain tissueclinical applicationcohortcomputerized data processingcostdark matterdata acquisitiondata analysis pipelinedeep learningearly detection biomarkersearly screeninghemodynamicshigh riskimage reconstructionimaging approachimaging systemimprovedin vivoindexinginnovationmagnetic fieldneuropathologynovelphysical modelpre-clinicalpreventreconstructionresearch clinical testingsexstructural imagingtool
项目摘要
Alzheimer Disease (AD) is one of the major health problems in the US and worldwide; it is a neurodegenerative
disorder that is characterized clinically by progressive dementia caused by pathological changes in brain tissue
preceding clinical symptoms by 15-20 years. Clinically-accessible methods are critically needed to screen for
early AD pathology and monitoring it over time, as well as for outcome measures in clinical drug trials.
The goal of this grant application is to establish an MRI-based technique, Deep-Learning-Augmented
quantitative Gradient Recalled Echo (DLA-qGRE), as a platform for quantitative clinical evaluation of brain tissue
microstructural neurodegeneration at early preclinical stages of Alzheimer Disease (AD). DLA-qGRE is a
combination of qGRE MRI technique and Regularization by Artifact REmoval (RARE) deep learning (DL)
methodology, both developed by our team. qGRE data obtained from a well-characterized cohort of patients
revealed the existence of brain regions with low R2t* values (Dark Matter), representing tissue essentially devoid
of neurons. These data show that Dark Matter can be identified already in people with preclinical stages of AD
(amyloid positive but without clinical symptoms) and also has a predictive power of future AD progression.
While qGRE sequence can be implemented on any commercial MRI scanner, the data analysis currently
requires hours of computing time, tempering clinical applications. To significantly accelerate and improve data
analysis, as well as data acquisition, in this proposal we will use innovative RARE technique, a DL approach that
explicitly accounts for the physical models of specific imaging systems and biophysical models of biological
tissues. Preliminary data show that DL has a potential for reconstructing qGRE metrics in a matter of seconds
with improved image quality and reduced noise. This opens opportunity for implementing DLA-qGRE as a widely
available tool for clinical applications. Based on this approach, we plan to achieve the following Specific Aims:
In Aim 1 we will develop DLA-qGRE data processing pipeline, compatible with MRI protocols of commercially
available GRE sequences, for fast and reliable detection of microstructural pre-atrophic neurodegeneration.
In Aim 2 we will optimize k-space sampling strategy for developing qGRE imaging protocol with increased
isotropic resolution and simultaneously decreased MRI acquisition time. Reducing scan time will significantly
help with patient comfort, be much less susceptible to motion, and reduce costs of the MRI exam.
In Aim 3 we will demonstrate that in a clinical neuroradiology setting DLA-qGRE compatible with MRI protocols
of commercially available GRE sequences (developed per Aim 1), and accelerated DLA-qGRE (developed per
Aim 2), can reliably detect microstructural neurodegeneration in preclinical and early symptomatic AD.
In Summary, successful completion of the aims of this proposal will open doors for using DLA-qGRE in clinical
settings as novel and more sensitive and specific MRI-based diagnostic measure of the neurodegenerative
aspects of early AD pathology as compared with current measurements of tissue atrophy.
阿尔茨海默病(AD)是美国和全世界的主要健康问题之一;这是一种神经退行性疾病
临床特征为由脑组织病理变化引起的进行性痴呆的疾病
提前临床症状 15-20 年。迫切需要临床可用的方法来筛查
早期 AD 病理学并随着时间的推移对其进行监测,以及临床药物试验中的结果测量。
本次拨款申请的目标是建立一种基于 MRI 的技术,即深度学习增强技术
定量梯度回忆回波(DLA-qGRE),作为脑组织定量临床评估的平台
阿尔茨海默病(AD)早期临床前阶段的微观结构神经变性。 DLA-qGRE 是
qGRE MRI 技术与伪影去除正则化 (RARE) 深度学习 (DL) 的结合
方法论,均由我们团队开发。 qGRE 数据从特征明确的患者队列中获得
揭示了 R2t* 值较低的大脑区域(暗物质)的存在,代表组织基本上没有
神经元。这些数据表明,在 AD 临床前阶段的人群中已经可以识别出暗物质
(淀粉样蛋白阳性但无临床症状)并且还具有预测未来 AD 进展的能力。
虽然 qGRE 序列可以在任何商用 MRI 扫描仪上实施,但目前的数据分析
需要数小时的计算时间,以适应临床应用。显着加速和改进数据
分析以及数据采集,在本提案中,我们将使用创新的 RARE 技术,这是一种 DL 方法,
明确地解释了特定成像系统的物理模型和生物的生物物理模型
组织。初步数据显示 DL 有可能在几秒钟内重建 qGRE 指标
提高图像质量并降低噪声。这为将 DLA-qGRE 广泛实施提供了机会
临床应用的可用工具。基于这种方法,我们计划实现以下具体目标:
在目标 1 中,我们将开发 DLA-qGRE 数据处理管道,与商业 MRI 协议兼容
可用的 GRE 序列,用于快速可靠地检测微观结构萎缩前神经变性。
在目标 2 中,我们将优化 k 空间采样策略,用于开发 qGRE 成像协议,增加
各向同性分辨率,同时减少 MRI 采集时间。显着减少扫描时间
有助于提高患者的舒适度,减少运动的影响,并降低 MRI 检查的成本。
在目标 3 中,我们将证明在临床神经放射学环境中 DLA-qGRE 与 MRI 协议兼容
市售 GRE 序列(根据目标 1 开发)和加速 DLA-qGRE(根据目标 1 开发)
目标 2),能够可靠地检测临床前和早期症状性 AD 中的微观结构神经变性。
总之,成功完成该提案的目标将为在临床中使用 DLA-qGRE 打开大门
设置作为神经退行性疾病的新颖且更敏感和更具体的基于 MRI 的诊断措施
与目前组织萎缩的测量结果相比,早期 AD 病理学的各个方面。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum dipole interactions and transient hydrogen bond orientation order in cells, cellular membranes and myelin sheath: Implications for MRI signal relaxation, anisotropy, and T1 magnetic field dependence.
细胞、细胞膜和髓鞘中的量子偶极子相互作用和瞬态氢键取向顺序:对 MRI 信号弛豫、各向异性和 T1 磁场依赖性的影响。
- DOI:
- 发表时间:2024-06
- 期刊:
- 影响因子:3.3
- 作者:Yablonskiy, Dmitriy A;Sukstanskii, Alexander L
- 通讯作者:Sukstanskii, Alexander L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manu S Goyal其他文献
Manu S Goyal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manu S Goyal', 18)}}的其他基金
White Matter Metabolism in the Context of Aging, White Matter Hyperintensities and Alzheimer's Disease
衰老、白质高信号和阿尔茨海默氏病背景下的白质代谢
- 批准号:
10444238 - 财政年份:2022
- 资助金额:
$ 199.18万 - 项目类别:
Brain metabolism during task-evoked and spontaneous activity in aging and Alzheimer's disease
衰老和阿尔茨海默病中任务诱发和自发活动期间的大脑代谢
- 批准号:
10585419 - 财政年份:2022
- 资助金额:
$ 199.18万 - 项目类别:
Aerobic Glycolysis: A Marker of BrainResilience to Aging and Alzheimer's Disease
有氧糖酵解:大脑对衰老和阿尔茨海默病的抵抗力的标志
- 批准号:
9564821 - 财政年份:2017
- 资助金额:
$ 199.18万 - 项目类别:
Aerobic Glycolysis: A Marker of BrainResilience to Aging and Alzheimer's Disease
有氧糖酵解:大脑对衰老和阿尔茨海默病的抵抗力的标志
- 批准号:
9905350 - 财政年份:2017
- 资助金额:
$ 199.18万 - 项目类别:
相似国自然基金
基于增广拉格朗日函数的加速分裂算法及其应用研究
- 批准号:12371300
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
肠菌源性丁酸上调IL-22促进肠干细胞增殖加速放射性肠损伤修复的机制研究
- 批准号:82304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于肌红蛋白构象及其氧化还原体系探究tt-DDE加速生鲜牛肉肉色劣变的分子机制
- 批准号:32372384
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于联邦学习自动超参调整的数据流通赋能加速研究
- 批准号:62302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
M2 TAMs分泌的OGT通过促进糖酵解过程加速肝细胞癌恶性生物学行为的机制研究
- 批准号:82360529
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 199.18万 - 项目类别:
Loss of transcriptional homeostasis of genes lacking CpG islands during aging
衰老过程中缺乏 CpG 岛的基因转录稳态丧失
- 批准号:
10814562 - 财政年份:2023
- 资助金额:
$ 199.18万 - 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
- 批准号:
10679809 - 财政年份:2023
- 资助金额:
$ 199.18万 - 项目类别:
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 199.18万 - 项目类别:
Using cellular co-biosis and age programmable mice to derive a global interaction map of aging hallmarks
使用细胞共生和年龄可编程小鼠来得出衰老标志的全局相互作用图
- 批准号:
10721454 - 财政年份:2023
- 资助金额:
$ 199.18万 - 项目类别: