Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
基本信息
- 批准号:2134080
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph learning has become the cornerstone in numerous real-world applications, such as social media mining, brain connectivity analysis, computational epidemiology and financial fraud detection. Graph neural networks (GNNs for short) represent an important and emerging family of deep graph learning models. By producing a vector representation of graph elements, GNNs have largely streamlined a multitude of graph learning problems. In the vast majority of the existing works, they require a given graph, including its topology, the associated attribute information and labels for (semi-)supervised learning tasks, as part of the input of the corresponding learning model. Despite tremendous progress being made, a theoretical foundation of optimal deep graph learning is still missing, a gap that this project aims to fulfill. The outcomes of this project have broader impacts on education and society. The results of this project enrich the curriculum as well as summer outreach programs at participating institutions, and are further disseminated to the community through a variety of formats to create synergies and advance understandings of different disciplines. This project benefits a variety of high-impact graph learning based applications, including recommendation, power grid, neural science, team science and management, and intelligent transportation systems.This project examines the fundamental role of the input data, including graph topology, attributes and optional labels, in graph neural networks. There are three research thrusts in this project. The first thrust seeks to understand how sensitive the GNNs model is with respect to the input graph; how to quantify the uncertainty of the GNNs model; and how that impacts the generalization performance of the GNNs model. The second thrust develops algorithms to optimize the initially provided graph so as to maximally boost the generalization performance of the given GNNs model. The third thrust develops active learning methods based on deep reinforcement learning with entropy regularization to optimally obtain the additional labels to further improve the GNNs model. This project investigates new theoretic foundations in terms of the sensitivity, the uncertainty and the generalization performance of graph neural networks. It develops new algorithms for learning optimal graphs and active GNNs with better efficacy whose fundamental limits, including sample complexity, generalization error bound, optimality and convergence rate, are well understood.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形学习已成为许多现实世界应用中的基石,例如社交媒体采矿,大脑连通性分析,计算流行病学和财务欺诈检测。图形神经网络(简称GNNS)代表了深度图学习模型的重要且新兴的家族。通过产生图形元素的向量表示,GNN在很大程度上简化了许多图形学习问题。在绝大多数现有作品中,它们需要给定的图,包括其拓扑,相关的属性信息和(半)监督学习任务的标签,这是相应学习模型的输入的一部分。尽管取得了巨大的进步,但仍缺少最佳深图学习的理论基础,该项目旨在实现这一差距。该项目的结果对教育和社会产生了更大的影响。该项目的结果丰富了课程以及参与机构的夏季推广计划,并通过各种格式进一步传播到社区,以创造协同作用并提高对不同学科的理解。该项目受益于各种基于图形学习的应用程序,包括建议,电网,神经科学,团队科学和管理以及智能运输系统。该项目研究了输入数据的基本作用,包括图形拓扑,属性,属性和可选标签,在图神经网络中。该项目中有三个研究作用。第一个推力试图了解GNNS模型对输入图的敏感程度。如何量化GNNS模型的不确定性;以及这如何影响GNNS模型的概括性能。第二个推力开发了算法来优化最初提供的图形,以最大程度地提高给定GNNS模型的概括性能。第三个推力基于熵正则化的深入增强学习开发了主动学习方法,以最佳获取其他标签,以进一步改善GNNS模型。该项目根据图形神经网络的灵敏度,不确定性和概括性能研究了新的理论基础。它开发了用于学习最佳图形和具有更好功效的主动GNN的新算法,其基本限制(包括样本复杂性,概括误差约束,最佳性和收敛速率)已充分了解。该奖项反映了NSF的法定任务,并通过评估值得进行评估。利用基金会的知识分子和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Policy Mirror Descent for Regularized Reinforcement Learning: A Generalized Framework with Linear Convergence
- DOI:10.1137/21m1456789
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Wenhao Zhan;Shicong Cen;Baihe Huang;Yuxin Chen;Jason D. Lee;Yuejie Chi
- 通讯作者:Wenhao Zhan;Shicong Cen;Baihe Huang;Yuxin Chen;Jason D. Lee;Yuejie Chi
SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
- DOI:10.48550/arxiv.2206.09888
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Zhize Li;Haoyu Zhao;Boyue Li;Yuejie Chi
- 通讯作者:Zhize Li;Haoyu Zhao;Boyue Li;Yuejie Chi
Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning
- DOI:10.1609/aaai.v36i8.20897
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Yuheng Zhang;Hanghang Tong;Yinglong Xia;Yan Zhu-;Yuejie Chi;Lei Ying
- 通讯作者:Yuheng Zhang;Hanghang Tong;Yinglong Xia;Yan Zhu-;Yuejie Chi;Lei Ying
Breaking the sample complexity barrier to regret-optimal model-free reinforcement learning
打破样本复杂性障碍,实现后悔最优无模型强化学习
- DOI:10.1093/imaiai/iaac034
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Li, Gen;Shi, Laixi;Chen, Yuxin;Chi, Yuejie
- 通讯作者:Chi, Yuejie
Is Q-Learning Minimax Optimal? A Tight Sample Complexity Analysis
- DOI:10.1287/opre.2023.2450
- 发表时间:2021-02
- 期刊:
- 影响因子:2.7
- 作者:Gen Li;Ee;Changxiao Cai;Yuting Wei
- 通讯作者:Gen Li;Ee;Changxiao Cai;Yuting Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuejie Chi其他文献
Memory-Limited stochastic approximation for poisson subspace tracking
泊松子空间跟踪的内存有限随机近似
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Liming Wang;Yuejie Chi - 通讯作者:
Yuejie Chi
Regularized blind detection for MIMO communications
MIMO 通信的正则盲检测
- DOI:
10.1109/isit.2010.5513407 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yuejie Chi;Yiyue Wu;A. Calderbank - 通讯作者:
A. Calderbank
Principal subspace estimation for low-rank Toeplitz covariance matrices with binary sensing
具有二元感知的低秩 Toeplitz 协方差矩阵的主子空间估计
- DOI:
10.1109/acssc.2016.7869594 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
H. Fu;Yuejie Chi - 通讯作者:
Yuejie Chi
Settling the Sample Complexity of Model-Based Offline Reinforcement Learning
解决基于模型的离线强化学习的样本复杂度
- DOI:
10.48550/arxiv.2204.05275 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gen Li;Laixi Shi;Yuxin Chen;Yuejie Chi;Yuting Wei - 通讯作者:
Yuting Wei
Support Stability of Spike Deconvolution via Total Variation Minimization
通过总变异最小化支持尖峰反卷积的稳定性
- DOI:
10.1109/ciss48834.2020.1570627765 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Maxime Ferreira Da Costa;Yuejie Chi - 通讯作者:
Yuejie Chi
Yuejie Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuejie Chi', 18)}}的其他基金
Federated Optimization over Bandwidth-Limited Heterogeneous Networks
带宽受限异构网络的联合优化
- 批准号:
2318441 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NSF Student Travel Grant for the Fifth Conference on Machine Learning and Systems (MLSys 2022)
第五届机器学习和系统会议 (MLSys 2022) 的 NSF 学生旅费补助金
- 批准号:
2219655 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2106778 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
- 批准号:
2126634 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
- 批准号:
2007911 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
- 批准号:
1901199 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
- 批准号:
1833553 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CIF: Small: Inverse Methods for Parametric Mixture Models
CIF:小:参数混合模型的逆方法
- 批准号:
1826519 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1806154 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
- 批准号:
1818571 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
KLF5在前列腺肿瘤管腔祖细胞向神经内分泌细胞转变中的功能和机制研究
- 批准号:82303045
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用化学遗传学研究植物的向重力性
- 批准号:32370306
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
TEA结构域转录因子2调控干细胞亚稳态向基态多能性转变的机理研究
- 批准号:32300466
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CXCR5依赖的边缘区B细胞向滤泡树突状细胞呈递外泌体引发心脏移植排斥的研究
- 批准号:82300460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
- 批准号:12375228
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349935 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349934 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349936 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345652 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant