Taming Nonlinear Inverse Problems: Theory and Algorithms

驯服非线性反问题:理论与算法

基本信息

  • 批准号:
    2126634
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

While modern developments in large-scale sensing and imaging modalities bring great premise in discovering novel scientific phenomena and improving the quality-of-life, making sense of the sensed data in an efficient and accurate manner require transformative designs of scalable and effective optimization methods for solving inverse problems that go beyond classical linear models. There is a significant need to advance the theory, algorithms, and applications of nonlinear inverse problems, where the collected data exhibit a nonlinear relationship with respect to the unknowns being sought after. Focused on taming nonlinear inverse problems, this project will be tightly integrated with education, outreach and dissemination activities including mentoring both graduate and undergraduate students with diverse backgrounds, developing courses and monographs on nonlinear inverse problems in data science, and organizing special sessions at suitable conference venues.The intellectual goal of this project is to develop theoretical and algorithmic foundations for solving nonlinear inverse problems, including the design and analysis of efficient algorithms with provable guarantees, characterization of fundamental trade-offs between resources (sample, computational and memory complexities, signal-to-noise ratio, etc.) and performance (statistical error rates, resolution, etc.), and validations on real data whenever applicable. The project seeks to leverage the diversity of multiple measurements and the invariance of data representation in the algorithm designs to minimize complexity and improve performance. The tools and techniques developed in this project will lead to further cross fertilization among the fields of signal processing, inverse problems, optimization theory, and machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然大规模传感和成像模式的现代发展为发现新的科学现象和提高生活质量带来了重要前提,但以高效和准确的方式理解传感数据需要可扩展和有效的优化方法的变革性设计解决超越经典线性模型的逆问题。迫切需要推进非线性反问题的理论、算法和应用,其中收集的数据相对于所寻求的未知数表现出非线性关系。该项目以解决非线性反演问题为重点,将与教育、推广和传播活动紧密结合,包括指导具有不同背景的研究生和本科生,开发数据科学中非线性反演问题的课程和专着,并在适当的会议上组织特别会议该项目的智力目标是为解决非线性反问题奠定理论和算法基础,包括设计和分析具有可证明保证的高效算法,表征资源(样本、计算和内存)之间的基本权衡复杂性、信噪比等)和性能(统计错误率、分辨率等),并在适用时对实际数据进行验证。该项目寻求在算法设计中利用多种测量的多样性和数据表示的不变性,以最大限度地降低复杂性并提高性能。该项目开发的工具和技术将导致信号处理、反问题、优化理论和机器学习领域之间的进一步交叉融合。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaling and Scalability: Provable Nonconvex Low-Rank Tensor Estimation from Incomplete Measurements
  • DOI:
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian Tong;Cong Ma;Ashley Prater-Bennette;Erin E. Tripp;Yuejie Chi
  • 通讯作者:
    Tian Tong;Cong Ma;Ashley Prater-Bennette;Erin E. Tripp;Yuejie Chi
Deep Unfolded Tensor Robust PCA With Self-Supervised Learning
Local Geometry of Nonconvex Spike Deconvolution From Low-Pass Measurements
The Power of Preconditioning in Overparameterized Low-Rank Matrix Sensing
  • DOI:
    10.48550/arxiv.2302.01186
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingyu Xu;Yandi Shen;Yuejie Chi;Cong Ma
  • 通讯作者:
    Xingyu Xu;Yandi Shen;Yuejie Chi;Cong Ma
Accelerating ILL-Conditioned Robust Low-Rank Tensor Regression
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuejie Chi其他文献

Settling the Sample Complexity of Model-Based Offline Reinforcement Learning
解决基于模型的离线强化学习的样本复杂度
  • DOI:
    10.48550/arxiv.2204.05275
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gen Li;Laixi Shi;Yuxin Chen;Yuejie Chi;Yuting Wei
  • 通讯作者:
    Yuting Wei
Regularized blind detection for MIMO communications
MIMO 通信的正则盲检测
Memory-Limited stochastic approximation for poisson subspace tracking
泊松子空间跟踪的内存有限随机近似
Principal subspace estimation for low-rank Toeplitz covariance matrices with binary sensing
具有二元感知的低秩 Toeplitz 协方差矩阵的主子空间估计
Support Stability of Spike Deconvolution via Total Variation Minimization
通过总变异最小化支持尖峰反卷积的稳定性

Yuejie Chi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuejie Chi', 18)}}的其他基金

Federated Optimization over Bandwidth-Limited Heterogeneous Networks
带宽受限异构网络的联合优化
  • 批准号:
    2318441
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
  • 批准号:
    2134080
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
NSF Student Travel Grant for the Fifth Conference on Machine Learning and Systems (MLSys 2022)
第五届机器学习和系统会议 (MLSys 2022) 的 NSF 学生旅费补助金
  • 批准号:
    2219655
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
  • 批准号:
    2106778
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
  • 批准号:
    2007911
  • 财政年份:
    2020
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
  • 批准号:
    1901199
  • 财政年份:
    2019
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CIF: Small: Inverse Methods for Parametric Mixture Models
CIF:小:参数混合模型的逆方法
  • 批准号:
    1826519
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
  • 批准号:
    1818571
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
  • 批准号:
    1806154
  • 财政年份:
    2018
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant

相似国自然基金

非线性高阶逆散射理论
  • 批准号:
    42374149
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
面向人员安检的毫米波逆散射机理及多级非线性量化反演方法研究
  • 批准号:
    62301098
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
具有逆动态特征的随机非线性系统输出反馈有限时间控制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合物理模型与渐进学习策略的探地雷达非线性电磁场逆散射研究
  • 批准号:
    62161027
  • 批准年份:
    2021
  • 资助金额:
    39 万元
  • 项目类别:
    地区科学基金项目
光学超晶格求逆设计和非线性光场调控
  • 批准号:
    91950103
  • 批准年份:
    2019
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

ERI: Hydraulic Cylinder Diagnostics Using Nonlinear Inverse Model Estimation and Frequency Domain Analysis
ERI:使用非线性逆模型估计和频域分析进行液压缸诊断
  • 批准号:
    2301535
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Linear and Nonlinear Nanophotonics: Simulation, Deep Learning and Inverse Design
线性和非线性纳米光子学:仿真、深度学习和逆向设计
  • 批准号:
    555670-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Nonlinear inverse problems in holography and particle kinematics
全息术和粒子运动学中的非线性反问题
  • 批准号:
    DGECR-2022-00438
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
    Discovery Launch Supplement
Nonlinear inverse problems in holography and particle kinematics
全息术和粒子运动学中的非线性反问题
  • 批准号:
    RGPIN-2022-03290
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
    Discovery Grants Program - Individual
Inverse Problems for Nonlinear Wave Phenomena
非线性波现象的反问题
  • 批准号:
    2154489
  • 财政年份:
    2022
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了