EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
基本信息
- 批准号:1833553
- 负责人:
- 金额:$ 8.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decentralized sensing systems play an increasingly critical role in everyday life, including wireless sensor networks, mobile crowd-sensing with internet-of-things, and crowdsourcing with human workers, with applications in network analysis, distributed wideband spectrum sensing, target tracking, environmental monitoring, and advertisement prediction. Despite the promise, however, efficient inference is extremely challenging due to processing large amounts of data at the typically resource-starved sensor nodes. This project develops efficient feature extraction and dimensionality reduction tools for decentralized sensing systems with minimal computation, storage and communication requirements of each sensor node to make sense of the surrounding dynamic environments. Students on this program will develop multi-disciplinary expertise in signal processing, machine learning, optimization, and statistics. New graduate-level courses on high-dimensional data analysis will be developed by the PI at Ohio State University. More specifically, this project offers an integrated approach for subspace learning from bits, where the sampling strategy explicitly accounts for the communication burden by only requesting a single bit from each sensor node. This project opens up opportunities to develop a theory of principal component analysis (or subspace learning) based on binary sensing, where noisy data samples are synthesized into coarse yet high-fidelity binary measurements that are more amenable for communication and inference. The consideration of binary measurements is well-motivated, as in practice, measurements are either mapped to bits from a finite alphabet before computation, or available naturally in the quantized form, such as comparison outcomes from human as sensors; constraints in storage and communication are often expressed in terms of the number of bits rather than the number of real measurements; finally, binary measurements are also more robust against unknown, nonlinear and heterogeneous distortions from different sensors compared with real measurements. Unfortunately, none of the existing subspace learning frameworks is tailored to acquire and process quantized measurements, and will yield highly sub-optimal results if naive quantization is applied. This project addresses the above challenge and highlights a novel interplay between the quantity, precision, and fidelity of measurements in sensing for estimating and tracking a low-dimensional subspace in a dynamic environment. Decentralized and online inference algorithms for subspace learning are developed together with adaptive sensing schemes to speed up convergence.
分散的传感系统在日常生活中起着越来越重要的作用,包括无线传感器网络,带有文字的移动人群敏感以及与人类工人的众包,并在网络分析中应用,分布式宽带光谱感应,目标跟踪,环境监测和广告预测。但是,尽管有希望,但由于在通常的资源含有的传感器节点上处理大量数据,因此有效的推断极具挑战性。该项目为分散的传感系统开发了有效的功能提取和降低降低工具,其计算,存储和通信要求最小,以使周围的动态环境有意义。该计划的学生将在信号处理,机器学习,优化和统计数据方面发展多学科专业知识。俄亥俄州立大学的PI将开发有关高维数据分析的新的研究生级课程。更具体地说,该项目提供了一种从位学习的集成方法,用于从位学习,在该方法中,采样策略仅通过要求每个传感器节点的单个位来明确说明通信负担。该项目为基于二进制传感开发主要组件分析理论(或子空间学习)开辟了机会,在该理论中,将嘈杂的数据样本合成为粗糙但高的二进制二进制测量结果,这些测量更适合通信和推理。考虑到二进制测量值的考虑是有充分动机的,因为在实践中,测量值要么在计算前映射到有限字母中的位,要么以量化形式自然使用,例如人类作为传感器的比较结果;存储和通信中的约束通常是根据位数而不是实际测量数来表示的。最后,与实际测量值相比,不同传感器的未知,非线性和异质变形也更加健壮。不幸的是,现有的子空间学习框架均未量身定制用于获取和处理量化的测量结果,如果应用天真的量化,将产生高度优化的结果。该项目解决了上述挑战,并突出了测量的数量,精度和忠诚度之间的新型相互作用,以感知在动态环境中估算和跟踪低维度子空间。开发了用于子空间学习的分散和在线推理算法以及自适应传感方案,以加快融合的速度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuejie Chi其他文献
Settling the Sample Complexity of Model-Based Offline Reinforcement Learning
解决基于模型的离线强化学习的样本复杂度
- DOI:
10.48550/arxiv.2204.05275 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gen Li;Laixi Shi;Yuxin Chen;Yuejie Chi;Yuting Wei - 通讯作者:
Yuting Wei
Regularized blind detection for MIMO communications
MIMO 通信的正则盲检测
- DOI:
10.1109/isit.2010.5513407 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yuejie Chi;Yiyue Wu;A. Calderbank - 通讯作者:
A. Calderbank
Memory-Limited stochastic approximation for poisson subspace tracking
泊松子空间跟踪的内存有限随机近似
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Liming Wang;Yuejie Chi - 通讯作者:
Yuejie Chi
Principal subspace estimation for low-rank Toeplitz covariance matrices with binary sensing
具有二元感知的低秩 Toeplitz 协方差矩阵的主子空间估计
- DOI:
10.1109/acssc.2016.7869594 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
H. Fu;Yuejie Chi - 通讯作者:
Yuejie Chi
Support Stability of Spike Deconvolution via Total Variation Minimization
通过总变异最小化支持尖峰反卷积的稳定性
- DOI:
10.1109/ciss48834.2020.1570627765 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Maxime Ferreira Da Costa;Yuejie Chi - 通讯作者:
Yuejie Chi
Yuejie Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuejie Chi', 18)}}的其他基金
Federated Optimization over Bandwidth-Limited Heterogeneous Networks
带宽受限异构网络的联合优化
- 批准号:
2318441 - 财政年份:2023
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
- 批准号:
2134080 - 财政年份:2022
- 资助金额:
$ 8.18万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for the Fifth Conference on Machine Learning and Systems (MLSys 2022)
第五届机器学习和系统会议 (MLSys 2022) 的 NSF 学生旅费补助金
- 批准号:
2219655 - 财政年份:2022
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2106778 - 财政年份:2021
- 资助金额:
$ 8.18万 - 项目类别:
Continuing Grant
Taming Nonlinear Inverse Problems: Theory and Algorithms
驯服非线性反问题:理论与算法
- 批准号:
2126634 - 财政年份:2021
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Small: Resource-Efficient Statistical Inference in Networked Environments
CIF:小型:网络环境中资源高效的统计推断
- 批准号:
2007911 - 财政年份:2020
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
- 批准号:
1901199 - 财政年份:2019
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Small: Inverse Methods for Parametric Mixture Models
CIF:小:参数混合模型的逆方法
- 批准号:
1826519 - 财政年份:2018
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
CIF: Medium: Collaborative Research: Nonconvex Optimization for High-Dimensional Signal Estimation: Theory and Fast Algorithms
CIF:中:协作研究:高维信号估计的非凸优化:理论和快速算法
- 批准号:
1806154 - 财政年份:2018
- 资助金额:
$ 8.18万 - 项目类别:
Continuing Grant
CAREER: Robust Methods for High-Dimensional Signal Processing under Geometric Constraints
职业:几何约束下高维信号处理的鲁棒方法
- 批准号:
1818571 - 财政年份:2018
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
相似海外基金
EAGER-DynamicData: Generative Statistical Modeling for Dynamic and Distributed Data
EAGER-DynamicData:动态和分布式数据的生成统计建模
- 批准号:
1462230 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
EAGER-DynamicData: Collaborative Research: Data-driven morphing of parsimonious models for the description of transient dynamics in complex systems
EAGER-DynamicData:协作研究:数据驱动的简约模型变形,用于描述复杂系统中的瞬态动力学
- 批准号:
1462254 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
EAGER-DynamicData: A Scalable Framework for Data-Driven Real-Time Event Detection in Power Systems
EAGER-DynamicData:电力系统中数据驱动的实时事件检测的可扩展框架
- 批准号:
1462311 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
EAGER-DynamicData: Reducing Orbital Position Uncertainty with Ensembles of Upper Atmospheric Models
EAGER-DynamicData:利用高层大气模型集合降低轨道位置不确定性
- 批准号:
1462363 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
- 批准号:
1462393 - 财政年份:2015
- 资助金额:
$ 8.18万 - 项目类别:
Standard Grant